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Abstract 

 

In this paper, we show that we have two approaches in implementing of 

Boundary-Domain Integro-Differential Equation (BDIDE) associated to Dirichlet 

Boundary Value Problem (BVP) for an elliptic Partial Differential Equation (PDE) 

with a variable coefficient. One way is by choosing the collocation points at all 

nodes i.e. on the boundary and interior domain.  The other approach is choosing 

the collocation points for the interior nodes only. We present the numerical 

implementation of the BDIDE associated to Dirichlet BVP for an elliptic PDE 

with a variable coefficient by using the second approach. The BDIDE is consisting 

of several integrals that exhibit singularities. Generally, the integrals are evaluated 

by using Gauss- Legendre quadrature formula. Our numerical results show that the 

use of semi-analytic method gives high accuracy results. The discretized BDIDE 

yields a system of equations. We then apply by a direct method i.e. LU decomposi- 
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tion method to solve the systems of equations. In all the test domains, we present 

the relative errors of the solutions and the relative error for the gradient. 

 

Keywords: Direct united boundary-domain integro-differential equation, Dirichlet 

problem, partial differential equation, semi-analytic integration method 
 

1. Introduction 
 

Almost  all  physical  phenomena  can  be  depicted  by  either   ordinary  or   

partial  differential  equations  (ODE or PDE) together with the  boundary 

conditions. Some of the well-known PDEs are wave equation, heat diffusion 

equation, Helmholtz equation, Maxwell equations and Schrödinger equation. 

Some numerical methods in solving PDE are finite difference method, finite 

element method, boundary element method (BEM) and boundary-domain element 

method (BDEM).   

The BEM and BDEM are formulated as integral equations. The difference 

between BEM and BDEM is that the BEM is for solving Boundary Integral 

Equations (BIEs) whereas the BDEM is the numerical method in solving 

Boundary Domain Integral Equation and Boundary-Domain Integro-Differential 

Equations (BDIDEs). See e.g. [11]. 

[1], [13] and [5] provide an excellent discussions on BEM. However, in order to 

use BEM, the fundamental solution is necessary which is not generally available 

for PDE with variable coefficient ( )a x . 

A parametrix method is the method to establish fundamental solutions for 

elliptic PDE with variable coefficients, see in [6]. By empoying a parametrix (Levi 

function) as an alternative to a fundamental solution, it enables us to reduce a 

BVP for PDE with variable coefficient not to BIEs but to Boundary-Domain 

Integral Equations (BDIEs) (see, e.g. [4], [10] and [14]).  

The classical works in [6], [4], [10] and [14] were carried on the indirect BDIEs 

for Dirichlet and Neumann BVPs.  Whereas, in this paper, we will deal with the 

direct BDIEs for Dirichlet BVP.  

In this paper, we will deal with the direct BDIDE for Dirichlet problem. For the 

discussions on the direct BDIDE, see e.g. [7], [3] and [9]. 

There are two types of direct BDIDEs. The first type is a segregated BDIDE that 

is when the unknown boundary functions and unknown functions inside the 

domain are regarded as formally unrelated to each other. The second type is the 

united BDIDE that is when the unknown boundary functions and the unknown 

functions inside the domain are related to each other. See e.g. [7] for the analysis 

of direct united BDIDEs. See e.g. [2] and [3] for the discussions on segregated 

BDIDE. 

Mikhailov & Mohamed in [8] and [9]  implemented the numerical computations 

for BDIE associated to Neumann BVP for PDE with variable coefficient. The 

spectral properties for BDIE’s operator associated with Neumann problem is given  
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in [9] by providing numerically the obtained several highest maximal eigen-values 

of the Neumann BDIE’s operator. 

In [12], the semi-analytic integration method for direct united BDIDE related to 

Dirichlet problem was constructed. This semi-analytic integration method is a 

method to reduce the integration error for the boundary integral that exhibits a 

logarithmic singularity as in the parametrix ( , )P x y . However, no numerical 

experiments are reported in [12]. 

   In this paper, we deal with the numerical implementation of the Dirichlet 

BDIDE of BVP for PDE with variable coefficients. The semi-analytic method as 

proposed in [12] is also used in this paper. 

 

2. The Dirichlet BDIDE 
 

We consider the linear second-order elliptic PDE with a variable coefficient a(x)  

as follows. 

2

, 1

( )
( ) ( ) ( ),    .

i j i j

u x
Au x a x f x x

x x

  
   

   
  

Here ( )f x  and ( )u x  are appointed functions and ( )u x  is the unknown function. 

The parametrix ( , )P x y  is given by    

2ln | |
( , ) ,    , ,

2 ( )

x y
P x y x y

a y


 

 
which meet  

( , ) ( , ) ( , ),xA P x y x y R x y   

 

where ( , )x y  is the Dirac delta function and ( , )R x y  is the remainder given by  
2

2

1

1 ( )
( , ) ,    , .

2 ( )

i i

i i

x y a x
R x y x y

a y r x 

 
 


  

 

Here r  is the radius such that  

  | | i i i ir x y x y x y     . 

We also denote that  
2 2

1 1

2

2
1

( ) ( , )
( ) ( ) ( ) , ( , ) ( ) ( )

( ) ( )( )
,

2 ( )

j x j

j jj j

j j j

j

u x P x y
Tu x a x x T P x y a x x

x x

a x x x y

a y r

 





 



 
 

 




 

  

 

where 1 2( ) ( ( ), ( ))x x x    is the normal pointing outwards with respect to  .

  The direct united BDIDE related to Dirichlet problem is given below. See e.g 

[11] and [12]. 
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( ) ( ) ( , ) ( ) d ( ) ( , ) ( ) d ( )

( ) ( , ) d ( ) ( , ) ( ) d ( ),    ,x

c y u y R x y u x x P x y Tu x x

u x T P x y x P x y f x x y

 

 

   

    

 

 
                  (1) 

 

where ( )c y depends on the position of point y
 i.e. 

2

if ,1

( ) 0 if \ ,

( ) / 2  if  ,

y

c y y

y y 




  
 

 

and    while ( )y  is an interior angle at a corner point y  of  .  For 

  a smooth boundary, it yields that ( ) 1/ 2c y  .  

 

3. The discretization of BDIDE with the collocation points ix   
 

We apply the same interpolation as describe in [11] to equation (1) and taking the 

collocation point ix  for ix   at all J  nodes of the mesh elements. We then 

prevail the following system of J  equations for J  unknowns ( )ju x . 

( ) ( ) ( )  ,     ,  
j

i i D j D D i

ij i i

x

c x u x K u x Q D x


                           (2) 

where 
D

ijK , 
D

iQ  and 
D

iD  are defined below. 

1 1

( )
( ) ( ,  ) d ( ) ( ,  ) ( )  d ( ),  

( )m l

M L
jD i i

ij j

m l

x
K x R x x x P x x a x x

x




 
 

   
     

  
    (3) 

                       
1

( ) ( , ) d ( ),
l

L
D i

ij x

l

Q u x T P x x x




                                            (4)   

1

( , ) ( ) d ( ).
m

M
D i

ij

m

D P x x f x x




                                               (5) 

Here ( )j x   are the global shape functions, l  is the linear iso-parametric 

element such that 
1

,  ,  ,
L

l k m

l

k m


        and m  is the bilinear 

quadrilateral mesh element such that 
1

,  ,  .
M

m k m

m

k m


        

In different notations, we can also write equation (3) as the following equation. 

 :

( )
( ) ( ,  ) d ( ) ( , ) ( )  d ( ).

( )m lj j
m m ml

jD i i

ij j

x x

x
K x R x x x P x x a x x

x




 
    

   
     

  
  

 Suppose that we denote  1 2, :  
 
be the intrinsic coordinate on the reference 

square element with 1 21 1,  1 1        and   be the intrinsic coordinate on 

the reference segment with 1 1.     
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  The local two-dimensional shape functions ( ),  1,2,..., 4.N N  , is given as 

follows: 

1 1 2 2 1 2

3 1 2 4 1 2

( ) (1 )(1 ) / 4,  ( ) (1 )(1 ) / 4,  

( ) (1 )(1 ) / 4,  ( ) (1 )(1 ) / 4.

     

     

       

       

 
We denote ( )n   as the local one-dimensional shape functions which is given 

below. 

   1 2

1 1
( ) 1 ,    ( ) 1 ,   1 1. 

2 2
              

Moreover,  1lJ  and 2mJ  are denoted for the Jacobians for the transformation in 

relations in  (6) and (7), respectively, 

                                                 
4

1

( ) ( ) ,mN

N

N

x X 


                                                              (6)     

2
 

1

( ) ( ) ,l n

n

n

x X 


                                                                (7) 

where ,  1, , 4mNX N    is the thN  vertex for each quadrilateral domain element 

m
 
and  ,  1,2l nX n   is the thn  endpoint for each line segment .l  

 
 

Denoting ,

m

N iG , 
m

iH  , ,

l

N iA  and 
l

iF  as in (8)-(11) below,  

       
1 1

2 1 2
-1 -1

( ) ( , ( )) ( ) d d ,m i

Ni N mG R x x J                                               (8) 

 
1 1

2 1 2
-1 -1

( , ( )) ( ( )) ( ) d d ,m i

i mH P x x f x J                                             (9) 

2 21

, 1
-1

1 1
( )

( )
( ( ),  ) ( ( )) ( ( ))  ( ) d , 

l i N k
N i p l

p k k p

A P x x a x x J
x

  

 
     

 


     
   

  

                

                                                                                                                                                     (10) 
 

1

1
-1

( ( ))  ( ( ), ) ( ) d ,
l i
i x lF u x T P x x J                                                 (11) 

 

enable us to write (3)-(5) as the following equations.  

 

                    

 
( , ),( , ),

:

,
j

m m mj l

lD m
N j m iij N j m i

x x

K G A
    

                                  (12) 

1

,
L

lD
ii

l

Q F


                                                            (13) 

 

1

.
M

D m

i i

m

D H


                                                          (14) 
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Here  ,N j m  denotes the local number of the node jx  on each domain element 

m . 

All the integrals in (8)-(11) are evaluated by Gauss-Laguare quadrature formula. 

However, the integrals in (8)-(11) pose singularity when x y . We employ Duffy 

transformation to handle the singularity for the domain integrals in (8) and (9). 

The semi-analytic method as proposed in [12] for Dirichlet BDIDE is used to 

evaluate the boundary integral that consists of logarithmic singularity in (10). For 

boundary integral (11), its singularity is understood in the Cauchy principal value 

sense. See e.g. [1]. 

 

The discretization of BDIDE with the collocation points ix   

 

Rather than having BDIDE (1) been applied at y , we can also substitute 

Dirichlet boundary condition u u  on  . The idea is rather than we choose the 

collocation point i
x  for 

ix   at all J  nodes of the mesh during the interpolation 

process, we can actually choose the collocation point ix  at 
D

J J  nodes of the 

mesh i.e for ix  . Here DJ  denotes the number of boundary nodes of the mesh. 

Hence, we can segregate ( )
j

D j

ij

x

K u x


  in (2) to two parts i.e. 

( ) ( ) ( ).
j j j

D j D j D j

ij ij ij

x x x

K u x K u x K u x
  

     

The second part ( )
j

D j

ij

x

K u x


  can be shifted to the right-hand side of (2). 

Hence, (2) yields the system of DJ J  linear algebraic equations for DJ J  

unknowns , given below. 

( ) ( ) ( )  ,     ,  
j j

i D j D j D D i

ij ij i i

x x

u x K u x K u x Q D x
 

             (15) 

Here 
D

ijK , 
D

iQ , and 
D

iD  are as  (12)-(14). In this paper, the system of equations 

(15) is solved by LU decomposition method. 

 

4. Numerical results 
 

In the numerical computations, we use Fortran (Intel Visual Fortran Compiler 

Professional Edition 11.1) with double precision accuracy. We calculate the 

relative errors for the estimate solution and their gradients as given in formulae 

below. 

1 1

1 1

max ( ) ( ) max ( ) ( )
( ) ,    ( ) .

max ( ) max ( )

j j m m

approx exact approx c exact c
j J j J

j m

exact exact c
j J j J

u x u x u x u x
u u

u x u x

   

   

  
  


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Here 
m

cx  represents the centers of the mesh elements m . The test domains that 

are used are a square 1 21 2,  1 2x x    , a circular domain with a unit radius 

and centered at coordinate (2, 2) and a parallelogram with vertices (3, 1), (4, 1), 

(6, 2) and (5, 2). These three test domains are also the test domains used in [3] for 

solving Neumann BDIE. The following two Dirichlet boundary value problems 

are taken into account in our numerical experiments: 

     

     

2 1

2 2 2

2 2 1

Test 1:  ,  0 for  and  for ,

Test 2 :  ,  2  for  and  for .

a x x f x x u x x x

a x x f x x x u x x x

    

    
 

For each domain, square, circular and parallelogram, we compute the 

comparative results of the relative error for both the estimated solutions approxu  and 

their gradient approxu  against the number of nodes J . The results are shown in 

Figures 1-3. 

As in [8] and [9], we let the error  u  depends on the number of nodes J  as 

well as the average of the linear size for the elements, h  such that 
/2(u) q qJ h  . 

Based on our experiments, the rate of the convergence for the solutions of the 

Dirichlet BDIDE as J   increases is near to the results obtained for BDIE for 

Neumann problem presented in [9]. It gives linear and quadratic convergence i.e.  

1q   in Test 1 and 2q   in Test 2. 

The precision in Test 2 is lower than Test 1 since unlike Test 1, not only 

numerical integral approximation is concerned for Test 2 but also the 

computations of the piece-wise bilinear interpolation for the quadratic exact 

solution   2

1u x x  contributes to the total of the error as compared to the linear 

exact solution   1u x x  that only involves integration error. 

 

 
(a)                       (b) 

 

 

Figure 1. Relative errors of the estimate solutions (a) and their gradients (b), on 

the square against number of nodes J  
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 (a)                       (b) 

 

Figure 2. Relative errors of the estimate solutions (a) and their gradients (b), on 

circular test domain against number of nodes J  

 

 
 

(a)                        (b) 

 

Figure 3. Relative errors of the estimate solutions (a) and their gradients (b), on 

parallelogram against number of nodes J  

 

5. Conclusions 
 

We have shown that there are two systems of linear systems can be obtained from 

the Dirichlet BDIDE. We can also say that there are two different approaches 

during the interpolation process. The first approach is by choosing the collocation 

points ix  for 
ix   i.e for all J  nodes like used in [7] for numerical solution of 

BDIE associated to Neumann problem. The second approach is by choosing the 

collocation points ix  with less no of nodes points i.e. at DJ J  nodes during the 

interpolation process such that it is taken for only ix  . In this paper, we show 

the numerical solution for Dirichlet BDIDE of the second way. The second 

approach seems to be an advantage in respect of numerical experiment less 

collocation points would lead to less computation’s time and less effort. However, 

the spectral properties of the matrix operator obtained from the system of 

equations is still need to be investigated. This is essential as to ensure that the 

system of equations obtained from the discretized Dirichlet BDIDE with less number 
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of collocation points not only can be solved by a direct method but also any 

iterative method. 

We solved the algebraic system of linear equations by employing a direct 

method i.e. by making use of LU decomposition method. The results of our 

numerical experiments on several test domains for the considered linear and 

quadratic solution Dirichlet problems are acceptable. For linear solution Dirichlet 

problem on square domain, the obtained relative errors are up to 1410  which is 

considered as high accuracy for a double precision numerical code.    

The accuracy in linear Dirichlet problem (Test 1) is much higher when we 

compare to the quadratic Dirichlet problem (Test 2) since there is only integral 

operator approximation error is occurred. But, for quadratic Dirichlet problem 

(Test 2), other than integration error, the quadratic exact solution gives the piece-

wise bi-linear interpolation to contribute most of the whole error. 

From the numerical experiments, we also validate that the semi-analytic method 

for the Dirichlet BDIDE as proposed in [12] give high accuracy results. In [12], 

only theoretical works have been presented and no numerical experiments is 

shown. 

It is also interesting to do the numerical experiment for the discretized BDIDE by 

taking ix  at all J  nodes to compare the accuracy with the results obtained in  this 

paper for BDIDE with less number of collocation points. Even though in terms of 

computational time it is not difficult to predict that discretized BDIDE with less 

number of collocation points requires less computational time, the accuracy of the 

results yield from both approaches are still need to be investigated. 

In this paper, we also use the semi-analytic integration method as proposed in 

[12] to handle the integration of the kernel that involves singularity of logarithmic 

function as occurs in Diriclet BDIDE. The paper [12] provides the theoretical 

works on semi-analytic integration method and no numerical validation is 

presented in the paper. 

From the numerical experiments that have been done in this paper, we validate 

that the use of the semi-analytic integration method as first proposed in [12] does 

give high accuracy results for the Diriclet BDIDE. 

This semi-analytic integration method is predicted to reduce the integration 

error. Hence, it is more prominent for the result in test 1 since its Dirichlet BDIDE 

has linear exact solution   1u x x  that deals only with integration error.  

Whereas, for the quadratic solution   2

1u x x  as in test 2, the piece-wise 

interpolation error contributes to the total error.   
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