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Graphical abstract 
 

 

Abstract 
 

Minimization of cost is very important in airline as great profit is an important objective for 

any airline system. One way to minimize the costs in airline is by developing an integrated 

planning process. Airline planning consists of many difficult operational decision problems 

including aircraft routing and crew pairing problems. These two sub-problems, though 

interrelated in practice, are usually solved sequentially leading to suboptimal solutions. We 

propose an integrated aircraft routing and crew pairing problem model, one approach to 

generate the feasible aircraft routes and crew pairs, followed by three approaches to 

solve the integrated model. The integrated aircraft routing and crew scheduling problem 

is to determine a minimum cost aircraft routes and crew schedules while each flight leg is 

covered by one aircraft and one crew. The first approach is an integer programming 

solution method, the second formulation is developed in a way to lend itself to be used 

efficiently by Dantzig Wolfe decomposition whereas the third one is formulated as a 

Benders decomposition method. Encouraging results are obtained when tested on four 

types of aircraft based on local flights in Malaysia for one week flight cycle.  

 

Keywords: Aircraft routing problem, crew pairing problem, integer linear programming, 

constructive heuristic method  

© 2016 Penerbit UTM Press. All rights reserved 

  

 
 

1.0 INTRODUCTION 

 
The aircraft routing problem is to seek the minimal cost 

that yields the sequence of routing each type of aircraft 

such that each flight leg is covered exactly once. In 

addition, the routing adopted must satisfy the 

appropriate aircraft maintenance restrictions. The crew 

pairing problem is then solved based on the given aircraft 

routes which are to allocate a crew for each flight leg 

while minimizing the cost and satisfying some rules.  
There are several approaches proposed for the 

individual aircraft routing and crew pairing problem. For 

instance, [1] provide a general review whereas [2], and 

[3] present some recent work in this area.  Other studies 

that include uncertainty are covered by [4], [5], and [6]. 

[7] were the first to address the integrated aircraft routing 

and crew pairing problem. The authors introduced some 
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linking constraints to their model and solve the problem 

using Benders decomposition. Time window and plane 

count constraints were also introduced to integrate 

aircraft routing and crew scheduling problem by [8]. The 

paper by [9] presented the integrated model of crew 

scheduling and maintenance routing decisions. They 

introduce the extended crew pairing model and the 

aircraft solution that does not have any short connection. 

[10] solved the integrated model of aircraft routing and 

crew pairing problem using Benders decomposition. A 

Pareto optimal cut has been introduced to detect the 

speed of convergence of such a decomposition method. 

An integrated model of fleet assignment, aircraft 

maintenance routing and the crew scheduling problems 

has been proposed by [11] using Benders decomposition 

enhanced by column generation. Recently, [12] 

proposed an iterative approach for solving the 

integrated aircraft routing and crew scheduling problem.  

[13] integrates aircraft routing, crew pairing and flight 

retiming problem that incorporate time windows for the 

departure time of the legs and solve it by using Benders 

decomposition.  The latest work is [14] which they 

integrate aircraft routing, crew pairing and re-timing and 

introduced the heuristic method in the two algorithms 

that are able to re-timing any aircraft and crew schedule 

so the costs of delay flights are decreased.   

The contributions of our study include (i) a formulation 

based on the constructive method in generating aircraft 

routes and crew pairs, (ii) a new ILP formulation for the 

integrated problem, (iii) a formulation based on Dantzig–

Wolfe decomposition, (iv) a formulation based on 

Benders decomposition, and (v) an experimental testing 

to demonstrate the efficiency of the proposed 

approaches. In our integer linear programming (ILP) 

formulation, few constraints are deducted from [10].  

Also, our first problem decomposition differs from previous 

work as it is based on the Dantzig Wolfe decomposition 

method while [10], [11] and [13] used Benders 

decomposition method instead, whereas [12] adopted 

an iterative approach. For comparison purposes, we also 

provide the solution based on Benders decomposition.  

The next section provides a description of the problem, 

the constructive method in generating the aircraft routes 

and crew pairs and the three problem formulations for 

the integrated model which are the ILP formulation, the 

Dantzig Wolfe decomposition and the Benders 

decomposition. This is followed by a section on the 

experimental results and the summary of our findings. 

 

 

2.0  PROBLEM FORMULATIONS 
 

In this section, a brief on both the aircraft routing and the 

crew pairing problems are given followed by a 

mathematical model that is decomposable into three 

problems for Dantzig Wolfe decomposition and same as 

for Benders decomposition method. In this study, we solve 

the problems for seven days operating flight legs and only 

the domestic flights are being regarded. The 

maintenance check for all aircraft is performed every 

night after the last operation for that day is completed 

since the domestic flights end before midnight. 

 

2.1  Aircraft Routing Problem 

 

The aircraft routing problem is solved for each aircraft 

type to determine the sequence of flight legs to be flown 

by each type of aircraft at a minimum cost to ensure that 

each leg is covered exactly once.  

Let ( , )A A AN D R  be a network of aircraft routes where 

AD  is a set of nodes while AR  is a set of arcs. For each 

aircraft type, we describe a set of flight legs as F . In the 

network, each node Ai D  represents the departure time 

or the arrival time of a flight leg if F . Let m  be the 

starting stations for routes with m M  being the 

maintenance stations for the aircrafts. Let 
A
mp  and 

A
mq  be 

the source and sink nodes, as the start and the end of a 

route respectively. The source nodes 
A
mp  represent the 

starting nodes of the legs at a certain maintenance 

station, m while the sink nodes 
A
mq  represent the last 

nodes of the legs that end at a certain maintenance 

station, m , at any time of the day.  

 

2.2  Crew Pairing Problem 

 

A crew pairing is a sequence of duty and rest periods for 

crews. The objective of the crew pairing problem is to find 

a minimum cost for the set of pairings in order to assign a 

qualified crew. As stated by [10], a pairing is a sequence 

of flight legs that begin and end at a crew base which 

can be the city where the crew is stationed. The limits in 

the number of duty periods for crews do not exceed five 

in any pairing.  

Let ( , )C C CN D R  be a network of crew pairing where 

CD  is a set of nodes while CR  is a set of arcs. In the 

network, each node Ci D  stands for the departure time 

or the arrival time of a flight leg .if F  Let B  be the set of 

crew bases. Let 
C
bp  and 

C
bq  be the source and sink 

nodes of a pairing for each crew base b B . The source 

nodes 
C
bp

 
represent the starting node of a pairing that 

starts at the crew base b  while the sink nodes 
C
bq

 
represent the end node of a pairing that ends at the 

crew base b .  

 

2.3 Possible Aircraft Routes and Crew Pairs by The 

Constructive Heuristic Method 

 

The aircraft routes and crew pairs are needed in solving 

integrated model of aircraft routing and crew pairing 

problems. In order to produce the aircraft routes and 

crew pairs, the constructive heuristic method is proposed 

as shown in Figure 1, Figure 2 and Table 1 represented the 

notation. 
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Phase 1 

Step 1: Define the number of aircraft route g , the number of flight 

legs k , the flight leg number defined in the flight schedule 

1,2,3,..., ,f n  the departure node of flight leg ,f 1,2,3,..., ,p t  the 

arrival node of flight leg ,f  1, 2, 3,..., ,q t t t t u      the 

maintenance station ,m  the departure time of flight leg f  as ,v  the 

arrival time of flight leg f  as ,w  the departure station of flight leg f  

as ,r  the arrival station of flight leg f  as .s  

Step 2: Choose a maintenance station, ,m 1, 0.g k   

Phase 2 

Step 1: Choose a flight leg f  that has a departure station at the 

maintenance station .m  

Step 2: Add it to the current route, 1.k k   Delete f  from the flight 

schedule.  

Step 3: Choose a flight leg f  that has these criteria: 

i. The r  of k  is the same with s  of 1.k   

ii. The v  of k  minus the w  of 1k   is bigger or equal to 20 

minutes.  

iii. The arrival station of f  equals to m , add the pairing into the 

current route. Retrieve all flight legs f except for flight leg 

f  in Step 1, Phase 2 into the list. 1.g g   

Step 4: Repeat the Step 1, Step 2 and Step 3 of Phase 2 until there is 

no more route obtained. 

Phase 3 

Step 1: Use f  in the Step 1 in Phase 2, go to Step 2 in Phase 2.  

Step 2: Choose a flight leg f that has these criteria: 

i. The r of k  is the same with s  of 1.k   

ii. The v  of k  minus the w  of 1k   is bigger or equal to 20 

minutes.  

iii. Add it to the current route, 1k k  . Delete f  from the flight 

schedule.  

Step 3: Choose a flight leg f  that has these criteria: 

i. The r  of k  is the same with s  of 1.k   

ii. The v  of k  minus the w  of 1k   is bigger or equal to 20 

minutes.  

iii. If the arrival station of f  equals to ,m  stop. Add the flight leg 

into the current route. Retrieve all the flight legs f  into the 

list. 1.g g      

Step 4: Repeat the Step 1, Step 2 and Step 3 of Phase 3 until there is 

no more route obtained. 

Phase 4 

Step 1: Choose other flight leg f  that has a departure station at the 

home base m  but exclude f  that had been used. Go to Phase 2 

and 3. Stop when all f  that has a departure station at the home 

base m  is used. 

 

Figure 1 The steps in generating aircraft routes 

 

 
Phase 1 

Step 1: Define the number of crew pair ,h  the number of flight legs 

,k  the flight leg number defined in the flight schedule 1,2,3,...,f n , 

the departure node of flight leg ,f  1,2,3,...,p t , the arrival node of 

flight leg ,f  1, 2, 3,..., ,q t t t t u      the initial crew base ,b  the 

departure time of flight leg f  as ,v  the arrival time of flight leg f  as 

,w  the departure station of flight leg f  as ,r  the arrival station of 

flight leg f  as ,s  length of duty period, ,dp  the sit time, ,st  the 

initial crew base x  and the total amount time of duty period and sit 

time, .dpst  

Step 2: 1, 0, 0, 0.h k dp st     Choose an initial crew base .b  

Phase 2 

Step 1: Choose a flight leg f that has a departure station at the 

crew base .b  

Step 2: Add it to the current pairing, 1k k  and .dp st ft   Record 

the duty period of ,f  amount of sit time of ,f  number of flight leg 

of f  and .dpst  Delete f  from the flight schedule.  

Step 3: If 480dpst  , choose a flight leg f  that has these criteria: 

i. The r  of k  is the same with s  of 1.k   

ii. The v  of k  minus the w  of 1k   is bigger or equal to 20 

minutes.  

iii. The arrival station of f  equals to ,b  add pairing into the 

current pairing. Retrieve all the flight legs f  except for 

flight leg f  in Step 1 of Phase 2 into the list. 1.h h   

Record the duty period of ,f  amount of sit time of 

,f dpst   in minutes and number of flight leg .f  

Step 4: Repeat the Step 1, Step 2 and Step 3 of Phase 2 until there is 

no more pair obtained. 

Phase 3 

Step 1: Use f  in the Step 1 in Phase 2, go to Step 2 in Phase 2.  

Step 2: If 480dpst  , choose a flight leg f  that has these criteria: 

i. The r  of k  is the same with s  of 1.k   

ii. The v  of k  minus the w  of 1k   is bigger or equal to 20 

minutes. 

iii. Add it to the current pairing, 1k k  . Delete f  from the 

flight schedule. Record the duty period of ,f  amount 

of sit time of ,f  dpst  in minutes and number of flight 

leg of .f   

Step 3: If 480dpst  , choose a flight leg f  that has these criteria: 

i. The r  of k  is the same with s  of 1.k   

ii. The v  of k  minus the w  of 1k   is bigger or equal to 20 

minutes.  

iii. If the arrival station of k  equals to ,b  stop. Add the 

pairing into the current pairing. Retrieve all of the flight 

legs f  except for flight leg f  in Step 1 of Phase 2 into 

the list. 1.h h   

Step 4: Repeat the Step 1, Step 2 and Step 3 of Phase 3 until there is 

no more pair obtained. 

Phase 4 

Step 1: Choose other flight leg f  that has a departure station at the 

home base b but exclude f  that had been used. Go to Phase 2 

and 3. Stop when all the f  that has a departure station at the crew 

base b  is used and the 480.dpst   

 

Figure 2 The steps in generating crew pairs 

 

 

2.4  Model Formulation 

 

The minimum time of a sit time is 20 minutes and the 

connection between two flight legs ,i jf f F  is 

considered to be a restricted connection if the sit time for 

the crews is between 60 and 90 minutes. A short 

connection happens when the sit time for the crews is 
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between 20 and 59 minutes. For simplicity, we provide a summary of the notation in Table 1. 
 

Table 1 The notation 

 
Notation Description 

M   Set of maintenance stations 

B  Set of crew bases 

R  Set of two flight legs that has a restricted connection  

S  Set of two flight legs that has a short connection 

A
mp  

The source nodes for aircraft paths 

A
mq

 

The sink nodes for aircraft paths 

C
b

p
 

The source nodes for crew paths 

C
b

q
 

The sink nodes for crew paths 

m  Set of possible paths from the source node
A
mp   to a sink node 

A
mq in 

A
mN  

b  Set of possible paths from the source node 
C
b

p  to the sink node 
C
b

q  in 
A
bN  

fw  Equal to 1  if leg f  belongs to path , and 0  otherwise
 

  Binary constant that represents the flow on the crew path   

  Binary constants that represents the flow on the aircraft path   

ijR  Binary constant will be 1  if connection ( , )i jf f R
 
is operated by the same crew but not same aircraft, 0  otherwise  

c  The cost of using the path   

ijn  Equal to 1  if leg i  and j  are operated sequentially in path ,  and 0  otherwise 

l  The number of required aircrafts in the path    

A  The number of available aircrafts  

B  
The number of duty periods allowed in a crew pairing 

C  
The number of short connections allowed in one path 

v
 

The number of duties in path 
  

s
 

The number of short connections in path   

ijz  Penalty cost associated with ( , )i jf f R  

 

2.4.1  The Integrated Model  

 

The integrated model of aircraft routing and crew pairing 

problem that we denote by (M1) is as follows: 

Minimize
( , )

c c z Rij ijmm Mb B b f f Ri j

    
  

     
 

 (1) 

subject to 1
m

f

m M

w 

 



 

   ( )f F          (2) 

1
b

f

b B

w 

 



 

  ( )f F             (3) 

m

A

m M

l
 

 

 
 

                    (4) 

m

C

m M

s 

 

 
 

                (5) 

b

B

b B

v
 

 

 
 

         (6) 

0
b m

ij ij

b B m M

n n   

   

 
  

    (( , ) )
i j

f f S (7)

0
b m

ij ij

ij

b B m M

n n R   

   

 
  

     (( , ) )
i j

f f R                (8) 

 0,1
ij

R       (( , ) )
i j

f f R
 

                  (9) 

{0,1}   ( ; )
m

m M                                               (10) 

 

{0,1}      ( ; ).bb B                                               (11) 

 

The objective function (1) is to minimize the cost of the 

aircraft routing and crew pairing problems and penalty 

costs. Equation (2) and (3) ensure that each flight leg use 

one aircraft and one crew pair only. Equation (4) 

imposed that all flight legs operated at one time do not 

exceed the available aircraft. Equation (5) guarantees 

that the short connection in the path   is only limited 

to C . Equation (6) ensures that each crew pairing does 

not exceed the number of duty periods allowed. 

Equation (7) ensures that a crew does not change the 

aircraft when the connection is too short. Equation (8) is 

to impose penalty costs if the second flight leg uses the 

same crew but not the same aircraft. Equations (9), (10) 

and (11) are the binary decision variables. 
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2.4.2  The Dantzig Wolfe Decomposition Method 

 

Dantzig Wolfe decomposition method which we refer to 

as (M2) can be used to reformulate the integrated model 

(1)-(11) using three problems as follows: 

(a) The master problem 

Minimize 
( , )b m

i j

P A

ij ij

b B m M f f R

c V c V z R   

   

 
   

                   (12) 

subject to 1 1
T
    P                           (13) 

1 1
T
    A            (14) 

0
b m

ij P ij A

ij

b B m M

n V n V R   

   

 
  

     (( , ) ).i jf f R  

                                                     (15) 

(b) The crew pairing problem (sub-problem 1)  

Minimize 
( )

b

P ij

b B

c n  

 

 
 


                   (16) 

subject to 
1

b

f

b B

w 

 


 


 

( )f F
           (17) 

b

B

b B

v 

 

 
 

 
                 (18) 

{0,1} 
          

( ; ).bb B                           (19) 

 

(c) The aircraft routing problem (sub-problem 2) 

Minimize ( )
m

A ij

m M

c n  

 

 
 

                         (20) 

subject to 1
m

f

m M

w 

 


 

 
 

( )f F            (21) 

m

A

m M

l 

 

 
 

              (22) 

m

C

m M

s 

 

 
 

                  (23) 

{0,1} 
 

( ; ),mm M                        (24) 

The steps of the approach are as in Figure 3. 

 

 

Figure 3 The Dantzig-Wolfe decomposition approach 

 

 

2.4.3  The Benders Decomposition Method 

 
The model of (1)-(11) can be reformulated as Benders 

decomposition method and referred to as (M3) that 

consists of three problems as follows: 

 

 

 

(a) The primal sub-problem 

Minimize  
( , )

c b Rij ijmm M f f Ri j

 
 

  
 

         (25) 

subject to 1
f

w
mm M

 
 

 
 

 ( )f F                   (26) 

  Al
mm M

  
 

 
 

           (27) 

  Cs
mm M

  
 

 
 

                   (28) 

ij ij
n n

mm M b B b
   

   

   
  

 (( , ) )f f Si j          (29) 

ij ij
n R nijmm M b B b
   

   

    
  

(( , ) )f f Ri j         (30) 

  0Rij   (( , ) )f f Ri j             (31) 

  0   ( ; )mm M              (32) 

 

(b) The dual sub-problem 

The dual subproblem is as follows: 

Maximize

( , ) ( , )

ij ijA C n nij ijff F f f S b B b f f Rb B bi j i j

           
   

         
     

                                 (33) 

Subject 

to
( , ) ( , )

f ij ij
w l s n n cij ijff F f f S f f Ri j i j

               
  

( ; )mm M                             (34) 

  zij ij   (( , ) )f f Ri j                     (35) 

  , 0                         (36) 

  0ij    (( , ) )f f Si j                    (37) 

0ij   (( , ) )f f Ri j            (38) 

(c) The master problem 

Minimize 
 


Bb b

yc


 0                     (39) 

subject 

to

0 ( , ) ( , )

ij ij A Cy n nij ij ff f S b B b f f Rb B b f Fi j i j

           
   

          
     

(( , , , , ) )P     


              (40) 

1
f

w
b B b

 
 

 
 

 ( )f F             (41) 

Bv
b B b

  
 

 
 

             (42) 
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The solution approach is summarized in Figure 4.  

Step 1- Solve the master problem (eqs 12-15). 

Step 2- Solve the 2 sub-problems . 

2a:  Solve the crew pairing problem (eqs 16-19)The two sub-

problems are solved. 

2b:   Solve the aircraft routing problem (eqs 20-24). 

Step 3- If the reduced costs are negative in the generated 

columns from steps 2a and 2b then augment the set PV  and 

AV  of the master problem with the generated columns  and 

solve    the  master problem. Otherwise (i.e., there is no column 

with negative reduced cost) stop. 
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Phase I 

1. Remove integrality constraints on all variables (relax  variables). 

2. Set 1   and 
1P 


.  

3. Solve relaxed master problem by branch and bound.  

(a) If the solution obtained is infeasible, then the problem is 

infeasible and stop. 

(b) Otherwise, let ( , )
0

y
   be an optimal solution.  

(a) Phase II 

(b) 1. Reintroduce integrality constraints on the master problem and 

return to Step 3 in Phase I. 

Phase III  

1. Reintroduce integrality constraints on the primal sub-problem and 

solve the primal sub-problem with branch and bound. Take  

from the Step 1 of Phase II and have  as the solution to the 

original problem. 

 

Figure 4 The Benders decomposition approach 

 

 

3.0  EXPERIMENTAL RESULTS 
 

All approaches namely the ILP, the Dantzig Wolfe 

decomposition and the Benders decomposition method 

were solved on an Intel Core Duo processor running at 

2.10 GHz using modelling languages, Microsoft Visual 

Studio C++ interface with ILOG CPLEX Callable Library 2.4. 

 

3.1  Data Sets 

 

Table 2 shows the data sets involve one week operating 

by an airline in Malaysia for local flights only for four types 

of aircraft illustrates. 

 
Table 2 Number of aircraft routes and crew pairs 

 

Aircraft 

Type 

Number of aircraft 

routes 

Number of crew 

pairs EQV 77 70 

738 112 112 

AT7 882 672 

734 1099 854 

 

 

3.2  Solution Approaches 

 

Table 3 presents the solution quality for models (M1), (M2) 

and (M3) that include the obtained cost and the 

respective CPU time for the four instances. The cost of the 

solution is given in Ringgit Malaysia (RM). 

 

 

Table 3 Summary results for the three proposed models (M1, M2 & M3) 

 

Aircraft type 

(#legs,#nodes) 

Model 1 (M1) Model 2 (M2) Model 3 (M3) 

Cost (RM) Time (secs) Cost (RM) Time (secs) Cost (RM) Time (secs) 

EQV (126,252) 147746 0.00 147745 0.01 147764 0.00 

738 (70,140) 149719 1.12 149719 1.22 149725 1.18 

AT7 (364,728) 328030 720.6 328030 1122.5 328274 934.3 

734 (546,1092) 817604 1651.8 817604 2357.6 817941 2011.4 

 

 

According to the results from Table 2, all legs are 

operated and all pairings are used. The total 

computing time of Dantzig Wolfe decomposition 

method (M2) is found to be larger than the time 

required by (M1) and (M3) while the cost of Benders 

decomposition approach (M3) is higher than the cost 

obtained by (M1) and (M2). 

 From the Table 2 above, we can say that the 

computing time grows drastically with the increase 

number of legs, number of nodes, number of aircraft 

routes and number of crew pairs. The computational 

times of solution for the EQV and 738 aircraft types 

that involved small numbers of those three attributes 

require a negligible amount of effort compared to 

the larger problems AT7 and 734 aircraft types that 

use larger values of these attributes. 

 

 

4.0  CONCLUSIONS 
 

The solutions obtained in this paper are encouraging 

though the integrated formulation appears to be 

relatively faster on those tested instances. One 

possible research avenue is to test relatively much 

larger instances which are likely to exist for bigger 

worldwide airline companies. This could be 

academically challenging and practically useful for 

such larger instances.  
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