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Graphical abstract 
 

 

Abstract 
 

The applications of real rectangular tensors, among others, including the strong ellipticity 

condition problem within solid mechanics, and the entanglement problem within 

quantum physics. A method was suggested by Zhou, Caccetta and Qi in 2013, as a 

means of calculating the largest singular value of a nonnegative rectangular tensor. In 

this paper, we show that the method converges under weak irreducibility condition, and 

that it has a Q-linear convergence.    
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1.0 INTRODUCTION 
 

Tensors can be considered a generalization of 

matrices. They are represented as a multidimensional 

array of numbers. The application of real rectangular 

tensors, amongst others, include part of the strong 

ellipticity condition problem within solid mechanics 

and entanglement problem within quantum physics 

[1-6].  

Most properties of tensors are generalized from 

matrices. We have seen in these past few years that 

the study of the spectral radius for tensors has 

developed a great interest. Chang, Qi and Zhou [7] 

introduced the class of the real rectangular tensor, 

and have presented a method for calculating the 

largest singular value of a nonnegative rectangular 

tensor. This method was originally used in order to find 

the largest eigenvalue of a nonnegative matrix [8, 9]. 

Later the method was extended by Ng, Qi and Zhou 

[10] for square tensors and most recently for 

rectangular tensors [7]. Zhou, Caccetta and Qi [11] 

improved the method in [7] and have shown that the 

algorithm converges for irreducible nonnegative 

rectangular tensors.  

The largest singular value problems can also be 

solved through the use of metaheuristics optimization 

algorithms. Some of the novel recent works within the 

field of metaheuristics include the Enhanced Leader 

PSO [12,13], the Brainstorm Optimization Algorithm 

[14], the Chaotic-Based Big Bang-Big Crunch 

Algorithm [15], and the Chaotic Bat Swarm 

Optimization [16].  

However the convergence of the method 

presented in [11] is limited to only irreducible 

nonnegative rectangular tensors. It is unknown 

whether the method is also convergence for a wider 

class of tensors.  

There are two objectives of this paper. The first 

objective is to prove that the method presented in 

the study of Zhou et al. [11] for finding the largest 

singular value is convergent when the tensor is a 

weakly irreducible nonnegative rectangular tensor, 

and the second is to prove that the rate of 

convergence for the method in the study [11] is Q-

A is a weakly 

irreducible 

nonnegative 

rectangular 

tensor 

 

B is a weakly 

primitive 

polynomial 

 Algorithm 1 

generates 

the largest 

singular 
value of A 

Algorithm 1 

has a Q-linear 

convergence 
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linear, when the tensor is a weakly irreducible 

nonnegative rectangular tensor. 

In this paper, we introduce the class of the weakly 

irreducible rectangular tensor, which is a wider class 

than the irreducible rectangular tensor. We then 

establish the convergence of the method in the 

study of Zhou et al. [11] for weakly irreducible 

nonnegative rectangular tensors, and its rate of 

convergence. This research intends to contribute to 

the convergence properties for the method of 

finding the largest singular value of rectangular 

tensors. 

In Section 2, we provide definitions and theorems to 

be used later. In Section 3, it is proved that the 

algorithm given in [11] converges for weakly 

irreducible nonnegative rectangular tensors. In 

Section 4, it is proven that the algorithm in [11] has Q-

linear convergence, and lastly in Section 5 this paper 

is concluded. 

 

 

2.0  PRELIMINERIES  
 

Let R  be the real field, let R  be the set of 

nonnegative numbers, and let 0R   be the set of 

positive numbers. Let 0,  , ,  p q m n R  and ,  2m n   . We 

can say A  is a real ,p q  -th order m n  dimensional 

rectangular tensor, where:  

  
1 1 1 1

1 1

, ,

1 , , ,  1    , ,

p q p qi i j j i i j j

p q

A A A R

i i m j j n

    

     

  (1) 

We call A  a nonnegative rectangular tensor if  

1 1
0

p qi i j ja    . When ,m n    A  is a square tensor and 

when 1,   1p q  , matrix A  is an m n  rectangular 

matrix.  

 The singular value of rectangular tensors is 

comparable to the eigenvalue of square tensors. 

Here we use the following definition for the singular 

value of rectangular tensors. See e.g. [7]. 

Let  1  p q mAx y R  , where:  

  
2 1 2 1

2 1

1

, , 1 , 1

,
p q p q

p p

m n
p q

ii i j j i i j ji
i i j j

Ax y A x x y

  

   

     

  1, ,i m  , and let  1  p q nAx y R  , where  

  
1 2 1 2

1 2

1

, , 1 , 1

,
p q p q

p p

m n
p q

i i jj j i i j jj
i i j j

Ax y A x x y

  

   

     

1, , .j n   We set M p q   and .N m n   Let 

    1 11 1,   .
M Mp q p qAx y x Ax y y 
      (2) 

We call C  a singular value of ,A  where C  is the 

set of complex numbers. We can say    \ 0mx C   and 

 \ 0ny C  are left and right eigenvectors of ,A  

paired with the singular value ,  if , x  and  y  satisfy 

the equation (2). The following are some 

preliminaries:  

Theorem 1 (p.20,[17]). An n n  complex matrix  A  is 

irreducible if and only if its directed graph  G A  is 

strongly connected. 

 

Theorem 2 (p.51,[17]). Let A  be an irreducible matrix, 

with  G A  being the associated directed graph. If 

the greatest common divisor (gcd) of the lengths of 

its closed paths is equal to one, then A  is primitive. 

 

The converse of Theorem 2 also holds. 

 

Theorem 3 (Chapter 2,[17]). If A  is an irreducible 

nonnegative square matrix, then:  

(i) the spectral radius  A  is an eigenvalue;  

(ii) there exists a nonnegative vector 0 0x   , such 

that  0 0Ax A x ;  

(iii) (uniqueness) if   is an eigenvalue with a 

nonnegative eigenvector, then  A   ;  

(iv)  A  is a simple eigenvalue of A ;  

(v) if   is an eigenvalue of A , then  A  . 

Furthermore, if a nonnegative matrix A  is primitive, 

then       ,  \ ,A A A        where  A  is the 

spectrum of .A   

 

Corollary 1 [18]. An irreducible matrix with a nonzero 

main diagonal is primitive. 

 

Proposition 1 [19,20]. The spectral radius of an  n n  

matrix A  is characterized by the equality 

   inf
N

A A


   

where N  denotes the set of all possible spectral 

norms of A . For any 0 , there exists a spectral norm 

N  such that   .A A    

 

 For any 1,2, , ,j n   let  
1• pj i i j jA A    be a p -th 

order, m  dimensional square tensor. For any 

1,2, , ,i m   let  
1• qi i ij jA A   be a q -th order  n  

dimensional square tensor. In this paper we consider 

all polynomials to be monotone and homogeneous.  

 

Definition 1 [7, 11]. A nonnegative rectangular tensor 

A  is irreducible if all the square tensors  
1• ,

pj i i j jA A     

1,2, , ,j n   and  
1• ,

qi i ij jA A   1,2, , ,i m   are 

irreducible. 

 

 Let A  be a nonnegative ,p q  th order m n  

dimensional rectangular tensor. The graph 

    ,G A V E A  is the associated graph of tensor A . 

The vertex set is 
1 1

p M

j jj j p
V V V

  
   , with 

 1,2, ,jV m    for 1,2, ,j p   and  1,2, ,jV n    for 
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1, , ,j p M    .M p q   An edge  ,k l k li i V V    exists 

if and only if  
1 1

0
p qi i j jA      for some 2M   indices  

   1 1, , , , , \ ,p q k li i j j i i  . The tensor A  is considered 

weakly irreducible, if the graph  G A  is connected 

[21]. 

 For a rectangular tensor A , let 0,   mx R   , ny R  

and:  

    11  ,   ,
Mp q

xB x y Ax y x
    (3) 

    11  ,   .
Mp q

yB x y Ax y y
    (4) 

The following Theorem was given in the study of Zhou 

et al. [11]. 

 

Theorem 4 [11]. If A  is an irreducible nonnegative 

rectangular tensor of the order ,p q  and the 

dimension m n , then there exists 0 0  ,
0 0   mx R   

and 
0 0 ,

ny R   such that:     

        1 1

0 0 0 0 0 0 0 0, ,   .,y

M M

xB x y x B x y y 
 

    (5) 

Moreover, 0  satisfies the following equalities:   

       

 
 

 
 

       

 
 

 
 

0 1 1,, \ 0 \ 0

1 1,, \ 0 \ 0

,,
min max ,  

,,
max min ,  

m n

m n

yx ji

M Mi jx y R R
i j

yx ji

M Mi jx y R R
i j

B x yB x y

x y

B x yB x y

x y


 

 

 
 

 
 

 
 
 
 

 
 
 
 

 

and 0   is the largest singular value of the 

rectangular tensor A . 

 

 

3.0  WEAKER CONVERGENT CONDITION 
 

An algorithm for finding the largest singular value of 

an irreducible nonnegative rectangular tensor was 

proposed by Chang et al. [7]. Later, it was updated 

by Zhou et al. [11]. In this section, we will prove that 

the algorithm is convergent for weakly irreducible 

nonnegative rectangular tensors. 

 

Algorithm 1 [11] 

 

Step  0: Choose 
 1

0,  0x    and  
 1

0y  . Set 1.k    

Step 1: Calculate          ,
k k k

xB x y    and        

                     ,
k k k

yB x y  . Let  

 
   

 

  

 

     

1 1
0, 0

   

min ,
k k

i j

kk
ji

k M M
k kx y

i jx y




 
 

 
 

  
 
 

  

, 

   

 

  

 

     

1 1
0, 0

   

max ,
k k

i j

kk
ji

k M M
k kx y

i jx y




 
 

 
 

  
 
 

 . 

Step 2: If ,k k   then stop. Otherwise, compute  

 

  
    

1

1

1

1

1

 

  ,

k M

k

k k M

x


 

 
  



 
  

    and   

  
    

1

1

1

1

1

 

  ,

k M

k

k k M

y


 

 
  



 
  

 , 

 replace k  with 1k   and go to Step 1. 

 

 Let 
0 . k k     The largest singular value of A  is 

0 .   Zhou et al. [11] have shown that this algorithm 

is convergent, if A  is an irreducible nonnegative 

rectangular tensor. We will now show that Algorithm 1 

is convergent if A  is a weakly irreducible 

nonnegative rectangular tensor.  

 We define the polynomial map  

 1, , :  
T N N

NP P P R R     through: 

  
1

1
,

p q

p q

Ax y
P z

Ax y





 
  
 

  

where    ,N m n    .
x

z
y

 
  
 

 Let iP  be a polynomial 

with degree, 1id  . Suppose that the coefficient of 

each monomial in iP  is nonnegative. The associated 

graph of P  is the directed graph     , ,G P V E P  

where the vertices   1,2, ,V N   and the edge 

   ,i j E P  if the coefficient of variable 
jz  appears 

in the expression of .iP   

 

Definition 2: Let  1, , :  
T N N

NP P P R R     be a 

polynomial map, where each iP  is a homogeneous 

polynomial of the degree 1d   with nonnegative 

coefficients. We call P  weakly irreducible if  G P  is 

strongly connected. If the directed graph  G P  is 

strongly connected, and the great common divisor 

(gcd) of the lengths of its circuits is equal to one, then 

we say P  is weakly primitive.  

 

Another way to check the gcd of a graph’s 

lengths of is to observe the diagonal of its associated 

matrix. An irreducible matrix has a nonzero main 

diagonal entry if and only if the associated directed 

graph has a loop, a closed path with length equals 

to one.  

We can show that P  is weakly primitive by 

proving that the associated matrix of its graph is 

primitive. Let   M G P  be the associated matrix of 

graph  G P . We can say that   M G P  is primitive if 

the graph is strongly connected, and if the gcd of its 

lengths is equal to one. 
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Definition 3: A rectangular tensor A  is weakly 

irreducible if P  is weakly irreducible. 

 

Let  
 

 

11

11

 

 

Mp q

Mp q

Ax y x
B z

Ax y y









 
 
  

 and let  
 

 

1

1

 

 

M

M

x
I z

y









 
 
 
 

. 

Hence we have      .B z P z I z   Now we prove 

that Algorithm 1 is convergent, if tensor A  is weakly 

irreducible.  

 

We can now present our results for this section. 

 

Lemma 1: If A  is a weakly irreducible nonnegative 

rectangular tensor with the order ,p q  and the m n  

dimension, then  B z  is a weakly primitive 

polynomial. 

Proof. Since A  is weakly irreducible then  P z  is a 

weakly irreducible polynomial. By Definition 2, the 

graph of  P z ,   G P z  is strongly connected. By 

Theorem 1, the matrix of   G P z  is irreducible. We 

know that   G I z , the graph of  I z , has a self-loop 

at each vertices. Therefore the matrix of   G I z  is a 

diagonal matrix. Hence, by Corollary 1, the matrix of 

  G B z  is primitive. By Theorem 2,   G B z  is strongly 

connected, and has a gcd that is equal to one. This 

implies by Definition 2 that  B z  is a weakly primitive 

polynomial. 

 

The following theorem is the main result of this paper. 

 

Theorem 6. Let A  be a weakly irreducible 

rectangular tensor of the ,p q -th order and the m n  

dimension. Suppose that  0 0 0,  , x y  is the solution of 

equation (5). Then, Algorithm 1 yields the value of 0  

through a finite number of steps, or generate two 

convergent sequences  k   and  k , both of which 

converge to 0 . The largest singular value of A  is 

0  .  

Proof. By Lemma 1 and Corollary 5.1 [21], Algorithm 1 

converges when the rectangular tensor A  is weakly 

irreducible. 

 

 

4.0  RATE OF CONVERGENCE 
 

In this section, we will show that Algorithm 1 has Q-

linear convergence, when A  is a nonnegative 

weakly irreducible rectangular tensor of ,p q -th order 

and m n  dimensional. We use the same argument 

as Zhou, Qi and Wu’s study [22]. 

 Define:  

    
 

 

11

11

 
'

 

Mp q

Mp q

Ax y x
F z B z

Ax y y









 
  
  

  

   
1

1  ,MD z F z
 
              

 

  
  ,

D z
H z

D z
   

where :  NR R    is defined as: 

   1

1

,
N

i

i

z z z


    

for any nonnegative .Nz R  We can see that the 

sequence   k
z  in Algorithm 1 is generated by  

     1
,     1,2, ,

k k
z H z k


     (6) 

and    1
k

z   for all 1,2,k    . 

 

Lemma 2. Let 0 0, , A x  and 0y  be as in Theorem 6 and 

let  0H z  be the Jacobian of the function H  at 0.z  

Then,    0   1.H z     

Proof. Let 0  be the largest singular value of B  and 

0z  be the corresponding eigenvector. We have 

      0 0 0/  .H z D z D z  We want to show that:  

  
         

  
0 0 0 0

0 2

0

' '
1.

D z D z D z D z
H z

D z

 
 



 
  

 
 

  

We already have      1
0 0 0 0

M
F z B z z


   and  0 1.z   

Hence,     
11

11
0 0 0 0.

MMD z F z z
  
        Let

1

1

1 0

M 
 
   , so 

we have  0 1 0.D z z   

Now we compute  0  'D z , i.e. the Jacobian of D  at 

0.z   Let  

 

    

  

  

  

1

1
1 0

1
1

1
1 2 0

0 0

1

1
0

  ,

M

M
M

M
N

F z

F zD z F z

F z

 
  

 
      

 
  

 
 
 
 

   
 
 
 
 

  

        
1 2

1 1
1 0 1 0 1 0

1
    .

1

M

M MF z F z F z
M

   
       

 
   

 
  

By the same method, we can get:  

       
1 2

1 1
0 0 0

1
   

1

M

M M
i i iF z F z F z

M

   
       

 
   

 
 , 1, , .i N   

Thus the Jacobian of D  at 0z  is given below: 

    
1

1
0 0     MD z F z

 
  


 


 
 

  

 

  

  

  

    

    

    

1
2

1
1 0 1

1 0 1 0

1 2

1 1
2 0 2 0 2 0

2
1

1
1 0 0

0

1 
 

1

1
   

1

1
  

1

M
M

M

M

M M

M

M
M N N

N

F z
F z F z

M

F z F z F z
M

F z F zF z
M

 
      

   
      

 
       

  
          

               
  
  

           
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  

  

 

 

 

2 1 0
1

1 0
2 0

2
0

1
0

1
  0

1

1
0  

1

M

M

M
N

M
N

F z
F z F zM

F z
F z

M

 
  

 
  

  
      
   
  
  
     

  

    
2

1
0 0

1
    '

1

M

Mdiag F z F z
M

 
  

 
  

 
  

 
    
2

1 0 0

1
      ' ,

1

M
diag z F z

M






  

where  
  2

1 0

1
   

1

M
diag z

M





 is a constant with 1 0  , 

and 0z  is a positive vector. Therefore 

     0 0 .G D z G F z  For the graph of B , by 

definition, there exists an edge between i  and j , if 

variable 
jz  appears in the expression of iB . Notice 

that the graph of  B  is similar to the graph of 

'D ,         0 0 0G D z G F z G B z  . Lemma 1 states 

that B  is weakly primitive, therefore, the graph of B  

is strongly connected. Hence the graph of 'D  is also 

strongly connected, and 'D  is therefore irreducible. 

The term  I z  in B  ensures that the diagonal is 

nonzero, and that implies  'D  be primitive matrix. 

Since  0D z  is a primitive matrix, by Theorem 3, the 

eigenvalues 1 2,  , , Nv v v  of  0  D z  can be ordered as 

follows:  

   1 0 2 3 .Nv D z v v v      

For all 1,t   we expand  0D tz  about 0z  by using 

Taylor's Series, and obtains: 

 

 

      
     

       

1 0 0

0 0 0 0 0 0

1 0 0 0

1 0 0 0

1 1

1 1 1 ,

t z D tz

D z D z tz z o tz z

z t D z z o t

t z t D z z o t









    

    

   









    

which implies that  0 0 1 0.D z z z  Since  0D z  is a 

primitive matrix, and 0 0z  , by referring to the 

Theorem 3, 0z  is an eigenvector of  0D z   associated 

with the largest eigenvalue 1 1.v    Therefore, 

    0 1 0 1D z z      . 

 We also have         0 1 0 2 0 0 ,ND z D z D z D z     

and           0 1 0 2 0 0 0 ,ND z D z D z D z eD z          

where e  is the row vector of ones with N  dimension. 

From       0 0 0/  ,H z D z D z  and after some 

manipulations we attain: 

 
 

         
  

   

0 0 0 0

0 2

0

0 0 0

1

' '
'

' '
.

D z D z D z D z
H z

D z

D z z eD z

 











  

 Let  0S D z   and 0Q S z eS  . Therefore the above 

equation can be written as  0 1/H z Q  . Here let it 

be reminded that we want to prove that  

   0 1( / 1.H z Q     We can achieve this by 

showing that the spectral radius of Q  is equal to 2 .v  

We can also show that the spectrum of Q  is 

 2 30,  , , , . Nv v v   

 We have        0 0 0 0 01 2
1 ,

N
z z z z ez      so 

0 1ez   and  0 0,   0. 
TT T TQ S z eS Q e S z eS e      We 

can conclude that Te  is an eigenvector of 
TQ , 

associated with the eigenvalue 0 . 

 There are two possible cases of TS . 

Case 1: The matrix  0

TTS D z   is diagonizable, that is, 

  TS  is semisimple. For 2,3, ,i N  , we assume 

,T i i

iS w v w  where iw  is an eigenvector of TS  that is 

associated with the eigenvalue .iv   Suppose that the 

set of eigenvector  1 2, , , Nw w w  is linearly 

independent.  

We can write 
0 0 0 ,T i T i T T i

i iv z w z v w z S w    for 2,3, , .i N    

We already have  0 0 0 1 0.D z z Sz z   So, 

   0 1 0

T T
Sz z , and 

 
0 1 0

T T Tz S z . (7) 

Hence,  0 0 1 0 1 0,     0.T i T T i T i T i

i iv z w z S w z w v z w      So, for 

2,3, , , i N   it is either 1iv   or 
0 0T iz w  . However 

1iv   for  2,3, , .i N   Therefore 
0 0.T iz w    

 Now we have  0 0.
TT i i T iQ w S z eS w S w     Since 

we assume that , T i i

iS w v w   so then .T i i

iQ w v w  The 

vector iw  is an eigenvector of 
TQ  associated with 

the eigenvalue iv   for 2,3, , .i N    

 Now we prove that the set of eigenvectors of Q , 

 2 3, , , ,T Ne w w w  is linearly independent.  Suppose 

that: 

 2

1 2 0,T N

Ne w w       (8) 

and 0iv   for 2,3, ,i p   and 0jv   for 1, , .j p N    

We know that 0T T TQ e e  and T i i

iQ w v w  for 

2,3, , .i N   Adding these two equations on LHS and 

RHS respectively yield:   

 
2 2

20 .T T T T N T p

pQ e Q w Q w e v w v w       

Now, substitute 
2 3, , , ,T Ne w w w  with 

2 3

1 2 3, , , ,T N

Ne w w w     of equation (8) and obtain 

 
2

1 2

2

2 2                                  

T T T T N

N

p

p p

Q e Q w Q w

v w v w

  

 

 

 
  (9) 

   2 2

1 2 2 2 ,0T T N p

N p pQ e w w v w v w          

Since we consider the set  2 3, , , Nw w w  to be linearly 

independent, we then get 
2 3 0,p      and 

we can now write equation (8) as:  

 1

1 1  0,T p N

p Ne w w  

     (10) 
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 1

1 1

1

1 1

0,

0.

T T p N

p N

T T T p T N

p N

S e w w

S e S w S w

  

  









  

  
  

Since T i i

iS w v w    for 1, , ,j p N    we then get 

 1

1 1 1 0.T T p N

p p N NS e v w v w  

      

Since 0jv    for  1, , ,j p N    it yields 

1 0.T TS e   

We then get 1 0   since 0T TS e    and S  is 

diagonalizable. From equation (10), we have 

 1

1 0.p N

p Nw w 

     (11) 

We know that the set  1 2, , ,p p Nw w w     is linearly 

independent, so 
1 0.p N     So we get 

1 0.N    This means that the set 

 2 3, , , ,T Ne w w w  is linearly independent and the 

spectrum of Q  is  2 30,  , , , .Nv v v   

Case 2: Consider that TS  is not diagonalizable or 

defective. We know that a defective matrix has less 

than N  different eigenvalues. Assume that TS  has 

q N  different eigenvalues where 
1 1 2, , , ,qv v v   

and these eigenvalues can be written as follows: 

 
1 1 2 3 .qv v v v      (12) 

So, TS  has the form 1TS XJX  , where the 

 1 2, , , qJ diag J J J   is in a canonical form. Suppose 

that the square matrices ,   1,2, ,iJ i q   be the Jordan 

blocks with various sizes, in the form of: 

 

1 0 0

0 1

  0 ,

0 1 

  0 0

i

i

i i

i

v

v

J v

v

 
 
 
 
 
 
 
 

  

where iv  is an eigenvalue of TS . Let  1 1 ,J   and iX  

is the i th column vector of ,   1,2, , .X i N   Let il  be 

the size of iJ  of each Jordan block, where 

1,2, , .i q   We now have 1TS XJX   , and therefore 

,TS X XJ  

 

 

1 2 3 4

1

2

1 2 3 4 2

2

0 0 0

0 1

                        .0

0 1

0 0

TS X X X X

v

X X X X v

v

 
 
 
 
 
 
 
 

  

From the above equation, we get:  

 

2 2 2

2 2 2

3 2 2 3

4 3 2 4

1 2 1

,

,

,

,

T

T

T

T

l l l

S X v X

S X X v X

S X X v X

S X X v X 



 

 

 

  

 

2 2

2 2 2

2 3 2

3 1 3 2

,

,

T

l l

T

l l l

S X v X

S X X v X

 

  



    

 Just like in Case 1, 
2 2 2

TS X v X  and based on the 

equation (7), 
2 0 2 0 2 2 0 2 1 0 2,T T T T Tv z X z v X z S X z X    

 2 1 0 2 0.Tv z X   From equation (12), 2 1.v   So 

0 2 0.Tz X    Hence,  

 0 ,
TTQ S z eS   

  2 0 2 2 0 2 2 0,
TT T T T T TQ X S z eS X S X S e z X S X        

which means that 
2 2 2.

TQ X v X  This implies that 2X  is 

an eigenvector of 
TQ  associated with the 

eigenvalue 2.v   

 From the equation 
3 2 2 3,

TS X X v X    we get  

2 0 3 0 2 3 0 3 2 0 3( ) 0.T T T T T Tv z X z v X z S X X z S X      

By equation (7), we get  2 0 3 1 0 3. 
T Tv z X z X   

Consequently, 
2 1 0 3( ) 0.Tv z X   By equation (12), and 

since 2 1, v   we obtain 
0 3 0.Tz X   Therefore,  

 

 

 

0

3 0 3 3 0 3

3 2 2 3

,

.

TT

TT T T T T

T

Q S z eS

Q X S z eS X S X S e z X

S X X v X

 

   

  

  

Likewise, we obtain: 

 

2 2 2

2 2

2 2 2

2 2 2

3 2 2 3

4 3 2 4

1 2 1

2 3 2

3 1 3 2

T

T

T

T

l l l

T

l l

T

l l l

Q X v X

Q X X v X

Q X X v X

Q X X v X

Q X v X

Q X X v X

 

 

  



 

 

 



 

  

Like in Case 1, we want to show that the set 

 ,  ,  2,3, ,T

ie X i N   is linearly independent. 

Let , ,  2,3, ,T

iY e X i N     . Therefore, 

  20 , ,TQ Y Ydiag J  , qJ . We now have the 

spectrum of ,Q    2 30, , , ,  qv v v  which is similar to the 

spectrum of .TQ  The spectral radius of Q  is 2 .v  

Therefore we get the following result: 

    2

0

1 1

1, 
vQ

H z 
 

 
   

 
   

since 1 2v   . 

Now we can determine the convergence rate of 

Algorithm 1. 

 

Theorem 7. Let A  and   0

k
z  be as in Theorem 6. Then 

the convergence rate of the sequence   0

k
z  is Q-



93               Nur Fadhilah Ibrahim & Nurul Akmal Mohamed / Jurnal Teknologi (Sciences & Engineering) 78:6–5 (2016) 87–94 

 

 

linear, which means, there exists a vector norm  

such that  

 

 

 

1

0

 
0

limsup 1.

k

k
k

z z

z z









  

Proof. By Proposition 1, there exist an 0  and a 

spectral norm  such that     0 0     .H z H z     

By Lemma 2:  

     0 0     1.H z H z      (13) 

Hence, by equation (6), we have 
    1

,     1,2, ,
k k

z H z k

    and  0 0 .z H z  Therefore, 

      1

0 0 .    
k k

z z H z H z

    Expand 

 k
z  at 0z  by using 

the Taylor expansion, we get: 

 

            
         

 

  
 

0 0 0 0

1

0 0 0 0

1

0

0
  

0

,

,

,

k k k

k k k

k

k

H z H z H z z z o z z

z z H z z z o z z

z z
H z

z z





    

    












  

From equation (13), we can get 

 

 

 

1

0

 
0

limsup 1.

k

k
k

z z

z z









  

Therefore Algorithm 1 is Q-linear convergence. 

 

 

5.0  CONCLUSION 
 

Within this paper, we proved that the algorithm for 

finding the largest singular value of nonnegative 

rectangular tensors, as proposed by Zhou et al. [11], is 

convergent under weak irreducibility condition and 

has a Q-linear rate of convergence. This paper only 

presents the convergence properties of Algorithm 1. 

In regards to numerical tests, the reader can refer to 

the referenced studies [7, 11].  

The study of rectangular tensors is relatively new. 

Another method for determining the largest singular 

value of rectangular tensors can be found in Zhang’s 

study [23], and it has been proven to be convergent 

under some assumptions. Algorithm 1 has also been 

generalised to nonnegative polynomials, as 

presented in Ibrahim’s study [24]. The method is also 

convergent.     
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