
Malaysian Journal of Mathematical Sciences 13(S) December: 65�75 (2019)
Special Issue: Conference on Mathematics, Informatics and Statistics (CMIS2018)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Comparison between BZAU, SRMI and MRM

Conjugate Gradient Methods in Minimization

Problems

Lai, L. Y.1, Ibrahim, N. F. ∗2, and Mohamed, N. A.3

1School of Informatics and Applied Mathematics, Universiti

Malaysia Terengganu, Malaysia
2Marine Management Sciences Research Group, School of

Informatics and Applied Mathematics, Universiti Malaysia

Terengganu, Malaysia
3Mathematics Department, Faculty of Science and Mathematics,

Universiti Pendidikan Sultan Idris, Malaysia

E-mail: fadhilah@umt.edu.my
∗ Corresponding author

ABSTRACT

The conjugate gradient method is one of the best methods that can
be used to solve nonlinear unconstrained optimization problems. This
method has gained the interest of researchers and has expanded rapidly.
There are many versions of the conjugate gradient method. Each version
claims to be e�cient. In this paper, we make the comparison among three
versions of the conjugate gradient method (MRM, SRMI and BZAU) by
using exact line search. The methods were tested in terms of number
of iteration and CPU time using 20 standard test functions. The result
showed that MRM is the most e�cient followed by BZAU and then SRMI.
However, BZAU successfully found all the minimizers of the test functions
whereas both SRMI and MRM failed at least once. In order to test the
robustness of the methods, extensive tests are required.

Keywords: Conjugate gradient method; unconstrained; optimization;
line search

Lai, L. Y., Ibrahim, N. F. & Mohamed, N. A.

1. Introduction

Consider the following unconstrained optimization problem:

min
x∈Rn

f(x)

where f : Rn → R is a continuously di�erentiable function. One of the most
popular methods to solve this kind of problem is the conjugate gradient method.
This is due to low memory requirement and global convergence properties.

Generally the method generated the sequence

xk+1 = xk + αkdk, k = 0, 1, 2, ..., (1)

where the step length αk > 0 is obtained by some line search method. Both
exact and inexact line searches can be used. For exact line search, the step
length αk is computed such that the objective function with dk direction is
exactly minimized. The formula is

αk = min
α≥0

f (xk + αdk). (2)

One popular inexact line search used to �nd the step length is the Wolfe line
search. The step length αk is computed such that

f (xk + αkdk) ≤ f (xk) + ραkg
T
k dk, (3)

g(xk + αkdk)
T
dk ≥ σgTk dk, (4)

where 0 < ρ < σ < 1. The search direction dk is generated by

dk =

{
−gk if k = 0

−gk + βkdk−1 if k ≥ 1
(5)

where gk = ∇f(xk) is the gradient and βk is a scalar. Most modi�cations of
the conjugate gradient are on the βk. Some of the well-known classic βk are as
follows.

Hestenes-Stiefel Formula (Hestenes and Stiefel (1952)),

βHSk =
gTk (gk − gk−1)
dTk−1(gk − gk−1)

66 Malaysian Journal of Mathematical Sciences

Comparison between BZAU, SRMI and MRM Conjugate Gradient Methods in
Minimization Problems

Polak-Ribiere-Polyak Formula (Polak and Ribiere (1969), Polyak (1969)),

βPRPk =
gTk (gk − gk−1)
gTk−1gk−1

Fletcher-Reeves Formula (Fletcher and Reeves (1964)),

βFRk =
gTk gk

gTk−1gk−1

Many versions of the conjugate gradient method can be found in literature.
Each version claims to be e�cient. It is important to determine which version
is the most e�cient among the new variety of conjugate gradient methods. In
this paper, we make the comparison among three versions of conjugate gradient
method, which are MRM (Hamoda et al. (2015)), SRMI (Shoid et al. (2015))
and BZAU (Baluch et al. (2017)).

In section 2, we will discuss the modi�ed conjugate gradient method βMRM
k ,

βSRMI
k and βBZAUk . In section 3, we present the numerical results and discus-

sion. Finally we conclude the �ndings in section 4.

2. The Methods

The three versions of conjugate gradient method that we compared are
MRM, SRMI and BZAU.

The di�erences among versions of conjugate gradient method are usually
step length αk and parameter βk. The MRM method used the following pa-
rameter βMRM

k

βMRM
k =

gTk (gk −
‖gk‖
‖gk−1‖gk−1)

‖gk−1‖ 2 +
∣∣gTk+1dk−1

∣∣
It was claimed to be promising and e�cient when compared to Fletcher-

Reeves (FR) and Polak-Ribiere-Polyak (PRP). The MRM method is globally
converged under exact line search. The next method, SRMI, was proposed by
Shoid et al. (2015). The method was modi�ed from PRP and Shapiee et al.
(2014) by taking the average βk of the two methods.

Malaysian Journal of Mathematical Sciences 67

Lai, L. Y., Ibrahim, N. F. & Mohamed, N. A.

βNRMI
k =

gTk (gk − gk−1)
gTk−1(gk − dk−1)

βSRMI
k = PRP +NRMI

βSRMI
k =

gTk (gk−gk−1)

gTk−1gk−1
+

gTk (gk−gk−1)

gTk−1(gk−dk−1)

2

The convergence analysis showed that this method was globally converged
under exact line search (Shoid et al. (2015)). When compared to FR, HS and
RMIL methods, the SRMI method was more e�cient.

The third method was BZAU which was introduced by Baluch et al. (2017).
The method was modi�ed from the PRP method and the method of Wei et al.
(2006) denominator to produce the new parameter

βBZAUk =
gTk (gk − gk−1)

−ηgTk−1dk−1 + µ
∣∣gTk dk−1∣∣ ,

for η ∈ [1, +∞) , µ ∈ (η, +∞). The best value for the parameter was
(η, µ) = (1, 2). The algorithm proposed by Baluch et al. (2017) proved to
be globally converged under Wolfe line search. The method also had su�cient
descent property independent of any line search. Numerical result showed that
the method outperformed TMPRP1 (Sun and Liu (2015))] which was more
e�cient than the CG_Descent method (Hager and Zhang (2006)) and DTPRP
method (Dai and Wen (2012)).

The following is the general algorithm for the conjugate gradient method.

Algorithm 1:

Step 1: Given an initial point x0 ∈ Rn, ε ≥ 0 and set k = 0, d0 = −g0if ‖g0‖ <
ε, then stop.
Step 2: Compute αk using line search.
Step 3: Let xk+1 = xk + αkdk, if ||gk+1|| < ε, then stop.
Step 4: Compute βk and dk+1.
Step 5: Set k = k + 1 and go to Step 2.

68 Malaysian Journal of Mathematical Sciences

Comparison between BZAU, SRMI and MRM Conjugate Gradient Methods in
Minimization Problems

2.1 Numerical Results and Discussion

Each of the three methods (MRM, SRMI and BZAU) claims to be more e�-
cient. Each method was compared with di�erent methods. Hence, we wanted
to determine which method between MRM, SRMI and BZAU was the most ef-
�cient based on number of iterations and CPU time. The BZAU held su�cient
descent property independent of any line search. Hence, in our experiment, we
used exact line search and search direction (5). There were 20 test functions
used. All the comparisons were done with three di�erent initial points. All the
test functions were solved by MATLAB software. In the experiment, we took
ε = 10−6 and iteration was terminated when the stopping criteria ||gk|| < 10−6

was ful�lled.

In the Tables 1 to 4, the symbol �FAIL� was represented when the routines
of code stopped, since it failed to �nd the positive value of step size or when
the number of iterations exceeded 1,000. Tables 1 and 2 show the performance
comparison of MRM, SRMI and BZAU methods based on number of iterations.
Tables 3 and 4 show the performance comparison of MRM, SRMI and BZAU
methods based on CPU time.

From Tables 1 to 4, the BZAU method successfully reached the minimizer
without fail. Each SRMI and MRM method failed to reach the minimizer at
least once. From Table 5 and Table 6, the BZAU method outperformed SRMI,
while MRM outperformed both BZAU and SRMI based on number of iteration.
Table 5 shows that the BZAU method had 56.35% less number of iterations,
18.25% equal number of iterations and 25.40% greater number of iterations
compared to SRMI. When compared to MRM, 34.13% of the BZAU had less
number of iterations, 26.98% was equal and 38.89% of the BZAU had greater
number of iterations. This also means that 38.89% of the MRM method had
less number of iterations compared to BZAU. Table 6 also shows that 52.38%
of MRM method had less number of iterations compared to SRMI.

From Table 7 and 8, BZAU outperformed both SRMI and MRM method, while
MRM outperformed SRMI in terms of CPU time. From Table 7, 67.46% of the
BZAU method had less CPU time compared to SRMI method and 53.17% of
the BZAU method had less CPU time compared to the MRM method. From
Table 8, 66.67% of the MRM method had less CPU time compared to the SRMI
method.

Therefore, we can conclude that MRM outperformed BZAU and SRMI.

Malaysian Journal of Mathematical Sciences 69

Lai, L. Y., Ibrahim, N. F. & Mohamed, N. A.

Table 1: Performance comparison between MRM, SRMI and BZAU based on number of iterations.

No Function Initial Point BZAU SRMI MRM

1. Rosenbrock (n=3)
(5,5,5) 107 72 39
(-10,-10,-10) 379 96 126
(11.5,11.5,11.5) 155 81 380

2. Rosenbrock (n=5)
(5,...,5) 121 298 208
(-10,...,-10) 241 135 FAIL
(11.5,...,11.5) 306 234 403

3. Rosenbrock(n=8)
(5,...,5) 263 315 101
(-10,...,-10) 184 385 FAIL
(11.5,...,11.5) 259 427 418

4. Dixon-Price (n=3)
(2,2,2) 25 24 20
(3,3,3) 17 24 25
(10,10,10) 46 45 54

5. Dixon-Price (n=5)
(2,...,2) 34 39 39
(3,...,3) 50 39 40
(10,...,10) 47 105 37

6. Dixon-Price (n=8)
(2,...,2) 63 62 59
(3,...,3) 46 59 53
(10,...,10) 58 FAIL FAIL

7. Schwefel (n=3)
(330,330,330) 3 2 2
(440,440,440) 3 2 2
(550,550,550) 3 2 2

8. Schwefel (n=5)
(330,...,330) 3 2 2
(440,...,440) 3 2 2
(550,...,550) 3 2 2

9. Schwefel (n=8)
(330,...,330) 3 2 2
(440,...,440) 3 2 2
(550,...,550) 3 2 2

10. Levy(n=3)
(2,2,2) 20 17 12
(-1,-1,-1) 11 16 16
(-2,-2,-2) 20 20 31

11. Levy(n=5)
(2,...,2) 25 15 22
(-1,...,-1) 22 16 11
(-2,...,-2) 20 21 23

12. Levy(n=8)
(2,...,2) 27 16 23
(-1,...,-1) 16 13 11
(-2,...,-2) 21 21 24

13. Zakharov (n=2)
(3,3) 4 4 5
(5,5) 4 4 5
(8,8) 5 4 4

14. Zakharov (n=3)
(3,3,3) 4 5 5
(5,5,5) 5 7 10
(8,8,8) 5 11 8

15. Zakharov (n=4)
(3,3,3,3) 5 14 8
(5,5,5,5) 10 13 6
(8,8,8,8) 6 11 9

16. Booth(n=2)
(3,3) 4 8 5
(5,5) 5 5 5
(8,8) 4 5 5

17. Trid (n=3)
(5,5,5) 4 9 4
(10,10,10) 3 11 4
(15,15,15) 4 12 4

18. Trid (n=5)
(5,...,5) 8 19 7
(10,...,10) 7 17 7
(15,...,15) 8 20 6

19. Trid (n=8)
(5,...,5) 17 33 8
(10,...,10) 12 28 12
(15,...,15) 9 25 10

20. Rotated hyper-ellipsoid (n=3)
(5,5,5) 6 11 6
(10,10,10) 6 12 6
(15,15,15) 6 12 6

21. Rotated hyper-ellipsoid (n=5)
(5,...,5) 10 16 9
(10,...,10) 11 16 10
(15,...,15) 11 16 10

22. Rotated hyper-ellipsoid (n=8)
(5,...,5) 15 22 14
(10,...,10) 16 23 14
(15,...,15) 16 23 14

23. Sum of Di�erent Power (n=3)
(-1,-1,-1) 16 149 20
(2,2,2) 36 98 23
(3,3,3) 17 76 26

24. Sum of Di�erent Power (n=5)
(-1,...,-1) 22 894 32
(2,...,2) 38 43 36
(3,...,3) 41 269 51

25. Sum of Di�erent Power (n=8)
(-1,...,-1) 273 227 41
(2,...,2) 79 465 35
(3,...,3) 33 543 41

26. Beale (n=2)
(0,0) 9 17 9
(2,2) 9 20 14
(3,4) 9 19 17

27. Colville (n=4)
(3,3,3,3) 318 402 170
(5,5,5,5) 194 215 234
(8,8,8,8) 293 271 245

70 Malaysian Journal of Mathematical Sciences

Comparison between BZAU, SRMI and MRM Conjugate Gradient Methods in
Minimization Problems

Table 2: Performance comparison between MRM, SRMI and BZAU based on number of iterations.

28. Styblinski-Tang (n=3)
(-1,-1,-1) 2 5 2
(-3,-3,-3) 4 2 2
(5,5,5) 2 4 6

29. Styblinski-Tang (n=5)
(-1,...,-1) 4 2 2
(-3,...,-3) 4 2 3
(5,...,5) 5 3 3

30. Styblinski-Tang (n=8)
(-1,...,-1) 2 3 2
(-3,...,-3) 4 3 3
(5,...,5) 4 3 4

31. Sum squares (n=3)
(3,3,3) 6 10 6
(5,5,5) 6 11 6
(8,8,8) 6 11 6

32. Sum square (n=5)
(3,...,3) 10 15 9
(5,...,5) 10 16 9
(8,...,8) 11 16 10

33. Sum squares (n=8)
(3,...,3) 15 22 13
(5,...,5) 15 22 14
(8,...,8) 15 22 14

34. Sphere (n=3)
(3,3,3) 2 2 2
(5,5,5) 2 2 2
(8,8,8) 2 2 2

35. Sphere (n=5)
(3,...,3) 2 2 2
(5,...,5) 2 2 2
(8,...,8) 2 2 2

36. Sphere (n=8)
(3,...,3) 2 2 2
(5,...,5) 2 2 2
(8,...,8) 2 2 2

37. Modi�ed sphere (n=6)
(3,...,3) 8 32 8
(5,...,5) 3 32 8
(8,...,8) 8 34 8

38. Three-Hump Camel (n=2)
(1,1) 5 9 8
(-3,-3) 5 7 5
(5,5) 5 9 7

39. Six-Hump Camel (n=2)
(1,1) 5 5 10
(-1,-1) 5 5 8
(3,3) 6 8 10

40. Bohachevsky (n=2)
(1.5,1.5) 6 8 10
(5,5) 7 7 11
(9.5,9.5) 7 10 9

41. Scha�er N2 (n=2)
(5,5) 1 1 1
(10,10) 1 1 1
(20,20) 1 1 1

42. Matyas (n=2)
(2,2) 1 1 1
(5,5) 1 1 1
(8,8) 1 1 1

Malaysian Journal of Mathematical Sciences 71

Lai, L. Y., Ibrahim, N. F. & Mohamed, N. A.

Table 3: Performance comparison between MRM, SRMI and BZAU based on CPU time.

No Function Initial Point BZAU SRMI MRM

1. Rosenbrock (n=3)
(5,5,5) 38.5000 23.9948 13.5469
(-10,-10,-10) 134.6094 32.0208 41.8906
(11.5,11.5,11.5) 51.6615 27.5104 137.1250

2. Rosenbrock (n=5)
(5,...,5) 68.6458 165.9635 112.7135
(-10,...,-10) 132.1458 72.4323 FAIL
(11.5,...,11.5) 171.4479 130.2396 233.5104

3. Rosenbrock(n=8)
(5,...,5) 263.1354 322.7396 95.9948
(-10,...,-10) 179.4010 402.5521 FAIL
(11.5,...,11.5) 258.2813 451.8281 439.1615

4. Dixon-Price (n=3)
(2,2,2) 9.0729 8.78125 7.5729
(3,3,3) 6.8646 8.9531 9.0156
(10,10,10) 16.8385 15.4583 18.1927

5. Dixon-Price (n=5)
(2,...,2) 18.6667 21.7240 21.3385
(3,...,3) 28.0469 21.3281 21.8438
(10,...,10) 25.2552 56.3490 20.6250

6. Dixon-Price (n=8)
(2,...,2) 60.4010 59.5469 56.8490
(3,...,3) 44.5625 56.8438 50.8385
(10,...,10) 55.9375 FAIL FAIL

7. Schwefel (n=3)
(330,330,330) 2.0156 1.6406 1.5938
(440,440,440) 2.3438 1.7031 1.5729
(550,550,550) 1.9271 1.7083 1.5885

8. Schwefel (n=5)
(330,...,330) 2.8385 2.2552 2.1042
(440,...,440) 2.9271 2.3385 1.9635
(550,...,550) 3.0104 2.5469 2.1771

9. Schwefel (n=8)
(330,...,330) 4.1823 3.2344 3.4583
(440,...,440) 4.2760 3.3359 3.3434
(550,...,550) 4.2344 3.3073 3.5729

10. Levy(n=3)
(2,2,2) 7.4531 6.5938 5.2031
(-1,-1,-1) 4.9375 6.6094 7.6094
(-2,-2,-2) 7.6094 7.5938 11.4063

11. Levy(n=5)
(2,...,2) 14.2500 9.2344 12.7031
(-1,...,-1) 13.7500 10.5000 7.2031
(-2,...,-2) 12.0313 12.0313 13.1094

12. Levy(n=8)
(2,...,2) 26.2344 16.2031 23.2969
(-1,...,-1) 17.7188 14.9063 12.7813
(-2,...,-2) 21.6563 21.6563 24.0781

13. Zakharov (n=2)
(3,3) 1.5000 1.5000 1.7031
(5,5) 2.9688 1.6875 1.6563
(8,8) 1.9844 1.8906 1.3594

14. Zakharov (n=3)
(3,3,3) 2.0469 2.0625 2.0569
(5,5,5) 2.7188 2.8438 4.2188
(8,8,8) 2.5625 4.7188 3.0781

15. Zakharov (n=4)
(3,3,3,3) 2.6250 6.4844 4.0156
(5,5,5,5) 5.0469 5.7813 3.1875
(8,8,8,8) 3.1250 5.4219 4.2344

16. Booth(n=2)
(3,3) 1.3438 2.4219 1.5625
(5,5) 1.5469 1.5938 1.6250
(8,8) 1.3438 1.7500 1.6875

17. Trid (n=3)
(5,5,5) 2.2813 4.4844 2,2969
(10,10,10) 1.8594 4.5781 2.2344
(15,15,15) 2.1094 5.0625 2.4531

18. Trid (n=5)
(5,...,5) 5.5000 12.1406 5.1875
(10,...,10) 4.9375 10.5156 4.8281
(15,...,15) 7.5469 11.9531 4.2031

19. Trid (n=8)
(5,...,5) 18.1719 35.3438 10.2656
(10,...,10) 13.0625 29.2969 14.1563
(15,...,15) 10.2031 25.7500 11.6563

20. Rotated hyper-ellipsoid (n=3)
(5,5,5) 4.2031 5.1250 4.8906
(10,10,10) 4.0625 5.1563 3.6875
(15,15,15) 4.2344 5.1563 3.0938

21. Rotated hyper-ellipsoid (n=5)
(5,...,5) 7.0781 9.6875 6.3125
(10,...,10) 7.3750 10.4219 7.1406
(15,...,15) 7.3281 10.2500 6.6563

22. Rotated hyper-ellipsoid (n=8)
(5,...,5) 18.6250 23.6719 15.3125
(10,...,10) 17.1094 24.4531 26.5938
(15,...,15) 17.0781 24.6250 24.6563

23. Sum of Di�erent Power (n=3)
(-1,-1,-1) 6.8594 51.5313 7.3906
(2,2,2) 14.9844 32.4375 8.4375
(3,3,3) 16.9063 25.1250 9.2500

24. Sum of Di�erent Power (n=5)
(-1,...,-1) 14.9844 629.0000 17.4531
(2,...,2) 21.8438 24.5469 19.6875
(3,...,3) 27.0313 152.0313 27.1406

25. Sum of Di�erent Power (n=8)
(-1,...,-1) 291.8594 222.7188 39.8594
(2,...,2) 78.3438 491.9063 34.5625
(3,...,3) 31.8438 586.6406 39.3125

26. Beale (n=2)
(0,0) 3.4375 5.4219 3.4375
(2,2) 3.8594 6.3434 4.7969
(3,4) 3.8906 6.0625 5.3281

27. Colville (n=4)
(3,3,3,3) 144.5313 189.3125 75.5000
(5,5,5,5) 84.6406 99.8750 102.5313
(8,8,8,8) 133.9688 121.3281 107.8594

72 Malaysian Journal of Mathematical Sciences

Comparison between BZAU, SRMI and MRM Conjugate Gradient Methods in
Minimization Problems

Table 4: Performance comparison between MRM, SRMI and BZAU based on CPU time

28. Styblinski-Tang (n=3)
(-1,-1,-1) 1.6406 2.5156 1.5313
(-3,-3,-3) 2.3125 1.8281 1.4531
(5,5,5) 1.5469 2.3750 3.1094

29. Styblinski-Tang (n=5)
(-1,...,-1) 3.4844 2.1719 2.3750
(-3,...,-3) 3.6406 2.6719 2.7656
(5,...,5) 4.1875 2.7969 2.7813

30. Styblinski-Tang (n=8)
(-1,...,-1) 3.3125 4.5156 3.9531
(-3,...,-3) 5.4219 4.4219 4.5156
(5,...,5) 5.3594 4.5156 5.5156

31. Sum squares (n=3)
(3,3,3) 2.6563 4.1875 3.2500
(5,5,5) 2.8906 4.6406 3.2031
(8,8,8) 2.8906 4.6094 3.0313

32. Sum square (n=5)
(3,...,3) 6.2188 9.1094 6.1250
(5,...,5) 6.5000 9.9844 6.2031
(8,...,8) 7.2656 9.6875 6.7031

33. Sum squares (n=8)
(3,...,3) 16.4688 24.0938 15.4688
(5,...,5) 16.4063 23.4063 16.3594
(8,...,8) 16.0469 23.2813 15.5781

34. Sphere (n=3)
(3,3,3) 1.3906 1.7813 1.5625
(5,5,5) 1.5156 1.7500 1.6719
(8,8,8) 1.4844 1.7344 1.6875

35. Sphere (n=5)
(3,...,3) 2.0313 2.0625 2.2031
(5,...,5) 2.2813 2.0469 2.3125
(8,...,8) 2.2656 2.0156 2.0469

36. Sphere (n=8)
(3,...,3) 3.5156 3.6094 3.3594
(5,...,5) 3.4219 3.3906 3.4063
(8,...,8) 3.3125 3.4219 3.5000

37. Modi�ed sphere (n=6)
(3,...,3) 7.3906 23.0000 6.5937
(5,...,5) 6.5469 24.8438 7.3750
(8,...,8) 6.5781 25.6094 6.7656

38. Three-Hump Camel (n=2)
(1,1) 2.1563 3.0313 2.8125
(-3,-3) 2.0938 2.7188 1.9375
(5,5) 2.0313 3.1406 2.5156

39. Six-Hump Camel (n=2)
(1,1) 2.1250 2.1875 3.3438
(-1,-1) 1.8750 1.9844 2.9063
(3,3) 2.2031 2.7031 3.5469

40. Bohachevsky (n=2)
(1.5,1.5) 2.2188 2.6719 3.5469
(5,5) 2.5313 2.6719 3.5625
(9.5,9.5) 2.6094 3.5000 2.9531

41. Scha�er N2 (n=2)
(5,5) 2.1563 3.0313 2.8125
(10,10) 2.0938 2.7188 1.9375
(20,20) 2.0313 3.1406 2.5156

42. Matyas (n=2)
(2,2) 0.9688 0.9375 1.3125
(5,5) 1.0156 0.8750 1.1719
(8,8) 0.7969 0.8125 1.1563

Table 5: Percentage performance of BZAU method compared to SRMI and MRM based on number
of iterations.

Method
Comparison
SRMI MRM

BZAU
Less number of iterations 56.35% 34.13%
Equal number of iterations 18.25% 26.98%
Greater number of iterations 25.40% 38.89%

Table 6: Percentage performance of MRM method compared to BZAU and SRMI based on number
of iterations.

Method
Comparison
BZAU SRMI

MRM
Less number of iterations 38.89% 52.38%
Equal number of iterations 26.98% 27.78%
Greater number of iterations 34.13% 19.84%

Malaysian Journal of Mathematical Sciences 73

Lai, L. Y., Ibrahim, N. F. & Mohamed, N. A.

Table 7: Percentage performance of BZAU method compared to SRMI and MRM based on CPU
time.

Method
Comparison
SRMI MRM

BZAU
Less CPU time 67.46% 53.17%
Equal CPU time 2.38% 0.79%
Greater CPU time 30.16% 46.03%

Table 8: Percentage performance of MRM method compared to BZAU and SRMI based on CPU
time.

Method
Comparison
BZAU SRMI

MRM
Less CPU time 46.03% 66.67%
Equal CPU time 0.79% 0.79%
Greater CPU time 53.17% 32.54%

3. Conclusions

In this paper, three di�erent versions of conjugate gradient which were
BZAU method, SRMI method and MRM method were compared using 20
standard test functions. The methods were compared in terms of number of
iteration and CPU time in order to determine the e�ciency of the method.
The result showed that MRM was the most e�cient followed by BZAU and
then SRMI. However, BZAU successfully found all the minimizers of the test
functions. Both SRMI and MRM failed at least once. In this test, however, only
exact line search and search direction (5) was used. If di�erent line search and
di�erent search directions were used, the result could be di�erent. Furthermore,
we only used 20 test functions. In order to test the robustness of the methods,
extensive testing is required.

Acknowledgement

We acknowledge the support from Research Acculturation Grant Scheme
(RAGS) research grant by the Ministry of Higher Education, Malaysia (MOHE).

References

Baluch, B., Salleh, Z., Alhawarat, A., and Roslan, U. A. M. (2017). A new mod-
i�ed three-term conjugate gradient method with su�cient descent property

74 Malaysian Journal of Mathematical Sciences

Comparison between BZAU, SRMI and MRM Conjugate Gradient Methods in
Minimization Problems

and its global convergence. Journal of Mathematics.

Dai, Z. and Wen, F. (2012). Another improved wei-yao-liu nonlinear conjugate
gradient method with su�cient descent property. Applied Mathematics and

Computation, 218(14):7421�7430.

Fletcher, R. and Reeves, C. M. (1964). Function minimization by conjugate
gradients. The computer journal, 7:149�154.

Hager, W. W. and Zhang, H. (2006). A survey of nonlinear conjugate gra-
dient methods. Paci�c Journal of Optimization. An International Journal,
2(1):35�58.

Hamoda, H., Rivaie, M., Mamat, M., and Salleh, Z. (2015). A new nonlin-
ear conjugate gradient coe�cient for unconstrained optimization. Applied

Mathematical Sciences, 9(37):1813 � 1822.

Hestenes, M. R. and Stiefel, E. (1952). Method of conjugate gradient for solving
linear systems. Journal of Research of the National Bureau of Standards,
49:409�436.

Polak, E. and Ribiere, G. (1969). Note sur la convergence de directions con-
juge`es. Rev. Francaise Informat Recherche Operationelle, pages 35�43.

Polyak, B. T. (1969). The conjugate gradient method in extreme problems.
USSR Computational Mathematics and Mathematical Physics, 9:94�112.

Shapiee, N., Mamat, R. M., and Mohd, I. (2014). A new modi�cation of
hestenesstiefel method with descent properties. AIP Conference Proceedings,
pages 520�526.

Shoid, S., Rivaie, M., Mamat, M., and Salleh, Z. (2015). A new conjugate
gradient method with exact line search. Applied Mathematical Sciences,
9(96):4799 � 4812.

Sun, M. and Liu, J. (2015). Three modi�ed polak-ribiere-polyak conjugate
gradient methods with su�cient descent property. Journal of Inequalities

and Applications, (1).

Wei, Z., Li, G., and Qi, L. (2006). New nonlinear conjugate gradient formulas
for large-scale unconstrained optimization problems. Applied Mathematics

and Computation, 179(2):407�430.

Malaysian Journal of Mathematical Sciences 75

	Introduction
	The Methods
	Numerical Results and Discussion

	Conclusions

