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Abstract—A semi-analytic integration method to handle the 

singularity of a parametrix concerning of direct united 

boundary-domain integro-differential Equation (BDIDE) 

related to the dirichlet boundary value problem for an elliptic 

Partial Differential Equation (PDE) with variable coefficient is 

presented in this paper. This approach can be an alternative to 

the Gauss-Laguerre quadrature formula to evaluate the 

integration with a kernel that deals with logarithmic singularity. 

The development of this method is inspired by the fact that the 

exact solution of an integral moves faster than its numerical 

solution. By using this approach, a result with high accuracy 

can still be obtained even with minimize numbers of the 

Gaussian quadrature points and thus reduce the numerical 

effort in the numerical integration. 

 

Index Terms—Direct united boundary-domain 

integro-differential equation, Dirichlet problem, partial 

differential equation, semi-analytic integration method. 

 

I. INTRODUCTION 

It is widely known that a boundary-value problem (BVP) 

for a PDE can be reduced to a boundary-integral equation 

(BIE) provided that a fundamental solution for the PDE is 

known. The obtained BIE can then be solved numerically. 

However, the fundamental solutions are known for many 

PDEs with constant coefficients and not generally available 

in an explicit form for PDEs with variable coefficients. 

Unlike a fundamental solution, a parametrix (Levi function) 

is accessible in handling the variable coefficients cases. This 

approach will reduces the PDEs with variables coefficients 

not to a BIE but to a boundary-domain integral equation 

(BDIE) or a boundary-domain integro-differential equation 

(BDIDE), see e.g. [1]-[3]. 

We consider the following second-order linear elliptic 

PDE with variable coefficient ( )a x  in a two-dimensional 

bounded domain ,  
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with the Dirichlet boundary condition 

 

 

( ) : ( ),    ,u x u x x   

where   is the boundary, ( )u x  is the unknown function, 

while ( ),  ( )f x u x  and  a(x) > 0  are prescribed functions. 

A parametrix 
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for PDE (1) with variable coefficient, yielded from the 

fundamental solution for the same equation but with 'frozen' 

coefficient  ( ) ( )a x a y . Here the radius r  is given below. 

  | |
i i i i

r x y x y x y     . 

The parametrix (2) satisfies equation 

( , ) ( ) ( , ),
x

A P x y x y R x y    

where ( )x y  is the Dirac delta function, and the remainder 

R  is as follows. 
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Note that the remainder R  [3] has only a weak singularity 

at x y . 

Let also denote that 
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Here 1 2( ) ( ( ), ( ))x x x    is the outward normal to  . 

As described in [1], [4] for united formulation, the direct 

united boundary-domain integro-differential equation 

(BDIDE) for the Dirichlet problem with respect to the 

unknown function u  is given below. 
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where 
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and ( )y  is an interior angle at a corner point y  of the 

boundary  . If   is a smooth boundary, then 

( )y  such that ( ) 1 / 2c y  . The first integral in the right 

hand side of (3) is understood in the Cauchy principal value 

sense if y , see e.g. [5]. 

Some analysis of the direct boundary-domain integral 

equations with variable coefficient can be found in e.g. [6] 

and [7].  

In [8], [9] the system of equations obtained from 

discretized BDIE related to Neumann problem for PDE with 

variable coefficient was solved by the direct (LU 

decomposition) method and Neumann iteration method.  In 

[9], the fast convergence of the iterative method is 

investigated by calculated the eigen-values of the obtained 

algebraic systems approximating the eigen-values of the 

BDIE. In both papers [8], [9], the boundary integral that 

consists of Parametrix is evaluated by using Gauss-Laguerre 

quadrature formula. 

In this paper, we focus on the BDIDE related to Dirichlet 

problem for PDE with variable coefficient as given in (4). 

The BDIDE in (4) is consisting of several integrals that 

involve singularity. The first integral in the right hand side of 

(3) is understood in the Cauchy principal value sense if 

y . The singularity of the domain integrals i.e. the first 

integral in the left hand side of (4) and the second integral in 

the right hand side of (4) are both can be treated by using 

Duffy transformation, see. e.g. [5]. The boundary integral 

that consists of Parametrix i.e. the second integral in the left 

can be handled by using Gauss-Laguerre quadrature formula. 

However, the approach might require considerable numbers 

of the Gaussian quadrature points in order to achieve a high 

accuracy result. In this paper, we propose a  semi-analytic 

integration method to avoid the use of Gauss-Laguerre 

quadrature formula in calculating the second integral in the 

left hand side of (3).  

 

II. DISCRETIZATION OF THE BDIDE AND THE 

SEMI-ANALYTIC INTEGRATION METHOD  

A. Discretization of the BDIDE 

We discretised the domain    by a mesh of M  

iso-parametric quadrilateral bilinear domain elements i.e. 

,  ,  ,
M

m
k mm

e e e k m       we can write the 

Cartesian coordinates of a point on domain element 
m

e    

in terms of the intrinsic coordinates  
1 2
, :    on the 

reference square 
1 2

1 1,  1 1        as 
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where ( )
N
  are the local shape functions, 
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and ,  1, , 4
mN

X N    are the vertices for each domain 

element 
m

e . 

The unknown function ( )u x  at any point x  is 

interpolated over its values ( )
j

u x  at the global nodes 
j

x  

such that 

( ) ( ) ( ),    , ,
j j

j

j

u x x u x x x   

where ( )
j

x  are the global shape functions satisfying the 

so-called  -property i.e. ( )
j k jk

x  ,  
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where ( )
m

x  are the functions inverse to (4). See e.g. [9]. 

The boundary   is dicretized with L  continuous linear 

iso-parametric elements, ,
L

l l
  U  where 

1 2
,  , ,  

L
    are the outer sides of the corresponding 

domain elements 
m

e . 

The Cartesian coordinates of a point on a boundary 

element 
l

    with the intrinsic coordinate   on the 

reference segment 1 1     are as follows. 
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n
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x X


                               
    

 (5) 

where ( )
n
  are the local one-dimensional shape functions, 

that are the traces of the two-dimensional shape functions 

( )
N
 : 

   
1 2

1 1
( ) 1 ,    ( ) 1 ,   1 1,

2 2
              

and
 

,  1, 2,
l n

X n   are the endpoints for each boundary 

element 
l

 . 

Equation (3) is equivalent to the following equation: 

 

( ) ( , ) ( ) d ( )

       ( , ) ( ) d ( ) 1 ( ) ( )

       ( ) ( , ) d ( )

       ( , ) ( ) d ( ),    .

x

u y R x y u x x

P x y Tu x x c y u y

u x T P x y x
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 

   
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




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         (6) 

We then apply interpolation to (6). Setting J  number of 
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nodes and placing the collocation points 
i

x  for 
j

x   at all 

nodes
j

x  , yields the following system of J  linear 

algebraic equations for J  unknowns ( )
i

u x . 

 ( ) ( ) 1 ( ) ( )

        ,    ,  ,  1, 2, , ,

j

i D j i i

ij
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D D i j
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 (7) 

where ,  
D D

ij i
K Q and 

D

i
D  are defined as in (8)-(10). 
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Changing the integration variables to the intrinsic 

coordinates, we can then write (8)-(10) as 
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where ( , )n j l  is the local number of the node 
j

x  on the 

boundary element 
l

 , ( , )N j m  is the local number of the 

node 
j

x  on the domain element ,
m

e  and  
, ,
,  ,  

m l l

N i N i i
G A F  and 

m

i
H  are given as follows: 
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Here 
2m

J and 
1l

J  represent the Jacobians of the 

transforms (4) and (5), respectively. 

When the collocation point 
i

x  is not a vertex of the 

integration element, the integrals in (11)-(14) are evaluated 

by the Gauss-Legendre quadrature formulas, 
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where i  and j  are the numbers of quadrature points, 

1
,  

p p
   and 

2 p
  are the quadrature point coordinates, while 

p
W  and 

q
W  are the quadrature weights associated to point p  

B. Semi-Analytic Integration Method 

When a collocation point 
i

x  is a vertex of the integration 

element, the kernels of the integrals (11), (12) and (14) are   

weakly singular at collocation points, thus need a special 

treatment. 

The integrals (12) with the kernel involving ln( )r  can be 

evaluated numerically by using the Gauss-Laguerre 

quadrature formula to handle the influence of the singularity 

ln( )r  when the collocation point  
i

x  is near to the integration 

element .
j

x  Instead, we can also use the proposed semi 

-analytic integration formula as explained below. The 

semi-analytic integration formula is arranged as follows. 
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            (15) 
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one can write (15) and (16) as 
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we can then write (18) as 
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The integrals 
1A

g  and 
2A

g  in (19) and (20) are calculated 

analytically. The radius r  can be written as 

2 2
 (  -  ) ,r h d s   where ,  h d  and s  are defined as in 

(21)-(23) below. 
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Here  
1

W and   2W  are the unit vectors. 

 

 
Fig. 1. Illustrations of the notations used in describing this semi-analytic 

integration method. 

 

Therefore we can write 
1A

g   and 
2A

g  in  (19) and (20)  as 

2 2
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1
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2 2
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2
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2 2 2 ( )
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



 

The analytic solutions for integrals  
1A

g  and 
2A

g  are 

calculated exactly by using Mathematica 5.1 as given in 

equations (24) and (25) below. 

International Journal of Applied Physics and Mathematics, Vol. 4, No. 3, May 2014

152



  

 
1 1 2 3 4

1 4

2

( )
,  

4 ( )

l

A i

J h h h h
g

a x W





  
                     (24) 

 
1 1 2 3 4

2 4

2

( )    
,

4 ( )

l

A i

J f f f f
g

a x W





  
                       (25) 

where 

1

4 2 2 2 2 2

1 2 2 3 2 3 1 2 3

2

2 3

2 2 2

1 2 3

2 2 2 2

2 2 3 1 2 3

3

2 2 2

1 2 3

2 2 2 2 2

3 1 2 2 3 3 1

( ) ,

3 2 4( )  

( )
      ,

4 ( )     

      ,

( 2 2 ) ln[ ],

l

ds
J

d

h W W W W W W W W

W W
ArcTan

W W W

h W W W W W

W
ArcTan

W W W

h W W W W W W






     





  



  

 
 
  

 
 
  

 

2 2 4 2 2

4 1 2 2 2 3 3

2 2

1 2 3

4 2 2 2 2

1 2 2 3 3 1 2 3

2

2 3

2 2 2

1 2 3

( 2 2 )

      ln[ 2 ],

2 4  

( )
      ,

h W W W W W W

W W W

f W W W W W W W

W W
ArcTan

W W W

    

 

    





 
 
  

 

2 2 2

2 3 1 2 3

3

2 2 2

1 2 3

2 2 2 2

3 1 2 3 1

2 2 4 2 2 2

4 1 2 2 3 1 2 3

4   

      ,

  

(  2 ) ln[ ],

( 2 ) ln[ 2 ].

f W W W W

W
ArcTan

W W W

f W W W W

f W W W W W W W

 



  

    

 
 
  

 

The analytic solutions for integrals  
1A

g  and 
2A

g  in (24) 

and (25) are uncertainty of the type 0 / 0  when 
1

i
x s   and 

2

i
x s . Therefore, when

1

i
x s , by taking the limit as 

1
0W  , we obtain 
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When 2

i
x s

, by taking the limit as 1 2
  W W

, we have 
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In handling the singularity for the domain integrals (11) 

and (14), we can split the square reference element into 

triangular sub-elements  and apply the Duffy transformation , 

see, e.g. [5]. 

System (7) can now be solved by any numerical method 

for solving linear algebraic systems. 

 

III. CONCLUSION 

As for the conclusion, we have introduced one approach in 

handling the integration that involves singularity for the 

parametrix ( , )P x y . The proposed method lies on the idea 

that the exact solution of an integral moves faster than the its 

numerical solution. Therefore, this semi-analytic integration 

method will make the numerical solution approach the exact 

solution of the respected integral's solution closer than the 

standard numerical approach. Calculating (12) exactly is also 

possible but of cause not a good idea since the parametrix 

( , )P x y   that appears in (12) is consisting of variable ( )a x  

which might be different for different cases of BVPs. This 

semi-analytic integration is then a good way to avoid 

calculating (12) each time whenever we have different values 

of ( )a x .  

Some numerical tests also indicate that this semi-analytic 

integration method does produce higher accuracy than those 

when we calculate the integral involving a Parametrix by 

using Gauss- Laguerre formula to handle the singularity of a 

logarithmic function. However, no numerical result will be 

presented in this paper.  
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