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Abstract 

In this paper, we present the numerical results of the Boundary-Domain Integro-

Differential Equation (BDIDE) associated to Dirichlet problem for an elliptic type Partial 

Differential Equation (PDE) with a variable coefficient. The numerical constructions are 

based on discretizing the boundary of the problem region by utilizing continuous linear 

iso-parametric elements while the domain of the problem region is meshed by using iso-

parametric quadrilateral bilinear domain elements. We also use a semi-analytic method 

to handle the integration that exhibits logarithmic singularity instead of using Gauss-

Laguare quadrature formula. The numerical results that employed the semi-analytic 

method give better accuracy as compared to those when we use Gauss-Laguerre 

quadrature formula. The system of equations that obtained by the discretized BDIDE is 

solved by an iterative method (Neumann series expansion) as well as a direct method 

(LU decomposition method). From our numerical experiments on all test domains, the 

relative errors of the solutions when applying semi-analytic method are smaller than 

when we use Gauss-Laguerre quadrature formula for the integration with logarithmic 

singularity. Unlike Dirichlet Boundary Integral Equation (BIE), the spectral properties of 

the Dirichlet BDIDE is not known. The Neumann iterations will converge to the solution if 

and only if the spectral radius of matrix operator is less than 1. In our numerical 

experiment on all the test domains, the Neumann series does converge. It gives some 

conclusions for the spectral properties of the Dirichlet BDIDE even though more 

experiments on the general Dirichlet problems need to be carried out. 
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1.0  INTRODUCTION 
 

It is well known that Boundary Element Method (BEM) 

can be used to solve Boundary Value Problems (BVPs) 

describes by PDE with constant coefficient 

numerically. 

At first, a BVP for PDE with constant coefficient 

need to be transformed to a Boundary Integral 

Equation (BIE). The transformation is only feasible on 
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the condition that a PDE’s fundamental solution is 

known. This fundamental solution satisfies the PDE with 

constant coefficient exactly. The numerical 

computational method for solving the BIE is known as 

BEM. By using BEM, the dimensionality of the BVPs is 

reduced by one order. The details on BEM are 

provided in e.g. 0, 0. However, the BEM is not 

applicable for problems with fundamental solution is 

unknown like occurs in problems for PDE with variable 

coefficient. 

A parametrix is much obtainable than a 

fundamental solution. It has been discussed in [3, 4, 5] 

that the Neumann or Dirichlet problems for PDE with 

variable coefficient can be reduced to Boundary-

Domain Integral Equation (BDIE) or BDIDEs, 

respectively. The numerical computational of BDIE or 

BDIDEs is known as Boundary-Domain Element Method 

(BDEM). 

We take into account the Dirichlet problem for the 

following second-order elliptic PDE. 
 

2

, 1

( )
( ) ( ) ( ),    ,

i j i j

u x
Au x a x f x x

x x

  
   

   
    (1) 

 

( ) : ( ),    ,u x u x x    (2) 

where   is the boundary,   such that 2  is 

bounded domain, ( )u x  is the unknown function, 

a(x) > 0  is the prescribed variable coefficient, while 

( )f x  and ( )u x  are the prescribed functions. 

A parametrix for (1) is as follows.  

2ln | |
( , ) ,    , ,

2 ( )

x y
P x y x y

a y


       (3) 

where the radius r   is as follows: 

  | | i i i ir x y x y x y      .                 (4) 

The parametrix (3) satisfies the following equation: 
( , ) ( ) ( , ),xA P x y x y R x y    

where  
2

2

1

1 ( )
( , ) ,    , ,

2 ( ) | |

i i

i i

x y a x
R x y x y

a y y x x 

 
 

 
          (5) 

and ( )x y
 
is the Dirac delta function. 

We suppose that 
2

1

2 2

2
1 1

( )
( ) ( ) ( ) ,

( ) ( )( )( , )
( , ) ( ) ( ) .

2 ( )

j

j j

j j j

x j

j jj

u x
Tu x a x x

x

a x x x yP x y
T P x y a x x

x a y r










 







 





    

Here 
1 2( ) ( ( ), ( ))x x x    is normal to   which is 

pointing away from the boundary  . 

As described in 0, 0, the direct united Dirichlet BDIDE 

is given as follows: 

( ) ( ) ( , ) ( ) d ( ) ( , ) ( ) d ( )

( ) ( , ) d ( ) ( , ) ( ) d ( ),  .
x

c y u y R x y u x x P x y Tu x x

u x T P x y x P x y f x x y

 

 

   

    

 

 
  (6) 

The coefficient ( )c y  depends on the position of point 

y  
 
i.e. 

2

if ,1

( ) 0 if \ ,

( ) / 2  if ,

y

c y y

y y 



  

 







 

where      and ( )y  is the interior angle 

at y   .  When   is a smooth boundary, the angle 

( )y   that gives ( ) 1 / 2c y  .  

Some analysis of direct united BDIDE were given in 

e.g. 0 where they discussed the existence, uniqueness 

and invertibility of the BDIDE operator. Whereas, the 

regularity and asymptotic behavior of the solutions 

obtained by BDIDE were detailed in 0. 

In 0, 0, the numerical implementation of the 

Neumann BDIE with added perturbation operator for 

PDE with variable coefficient was presented. 

The system of linear equations that obtained from 

the discretized Neumann BDIE was solved by a direct 

an iterative methods. In 0, the spectral properties of 

the discrete Neumann BDIE operator by analyzing the 

maximal eigen-values was also presented. 

In order to minimalize the integration error for the 

integration with logarithmic kernel e.g. ( , )P x y , 

Mohamed in 0 constructed the semi-analytic 

integration method. It was envisaged that the 

proposed semi-analytic integration method will make 

the numerical solution approaches the exact of the 

respected BDIDE’s solution closer than the standard 

numerical approach involving logarithmic singularity 

i.e. Gauss-Laguerre quadrature formula. However, no 

numerical implementation was presented in 0 to 

validate the claim. 

In this paper, we present on the numerical solutions 

of the Dirichlet BDIE (6). All the numerical procedure is 

based on the suggestion made in 0. 

 

 

2.0  DISCRETIZATION OF BDIDE 
 

We integrate the integrals in (6) by using the standard 

Gauss-Legendre quadrature formula whenever no 

singularity is involved. Whenever the singularities occur 

in the integrals, special care must be taken for their 

evaluations. For singularities anticipate on the domain 

integrals in (6), we use the Duffy transformation. 

The boundary integral on the left hand side of (6) 

exposes the disadvantage of the logarithmic 

singularity of ( , )P x y  whenever x y . 

The integral that consists of logarithmic singularity 

cannot be accurately and efficiently be computed by 

using the standard Gauss-Legendre quadrature 

formula. Normally Gauss-Laguerre quadrature formula 

can treat the logarithmic singularity. See e.g. 0. 

However, the approach might lead to the use of 

considerably many quadrature points in order to get 

an accurate result. 

The semi-analytic method proposed in 0 was derived 

as an alternative to Gauss-Laguerre formula for 

evaluating integral that involves with logarithmic 

singularity.  
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Here, we present the numerical results of Dirichlet 

direct-united BDIDE to validate the claim made.  By 

following the recommendation made in 0, we mesh 

the domain   by M  quadrilateral bilinear elements 

m
e

 
i.e. ,  ,  .

M

m
k mm

e e e k m       

Suppose that  
1 2

: ,  
 

represents the intrinsic 

coordinate for square element such that 
1 2

1 , 1.       

We can relate the intrinsic coordinate   and the 

Cartesian coordinate ( )x   on the quadrilateral 

domain element 
m

e    as follows. 

4

1

( ) ( ) ,
mN

N

N

x X 


    (7) 

where 

1 1 2 2 1 2

3 1 2 4 1 2

( ) (1 )(1 ) / 4,    ( ) (1 )(1 ) / 4,

( ) (1 )(1 ) / 4,    ( ) (1 )(1 ) / 4,

     

     

       

       
  

and 
mN

X  for 1, , 4N    is the vertices of the 

quadrilateral elements
m

e . For the boundary, we 

discretized the boundary   by using L  continuous 

linear isoparametric elements, i.e. .
L

l l
  U  Here 

l
  is the line segment associates with the outer side 

of quadrilateral domain element .
m

e   

We denote   be the intrinsic coordinate on the 

reference segment such that 1 1.    Then, the 

relation between the intrinsic coordinate   and the 

Cartesian coordinate ( )x   on the boundary element 

l
  is given as follows: 

2

 

1

( ) ( ) ,
l n

n

n

x X 


    (8) 

where ( )
n
  are the local one-dimensional shape 

functions given below. 

   
1 2

1 1
( ) 1 ,    ( ) 1 ,   1 1. 

2 2
               

Equation (6) is equivalent to the equation given 

below. 

 

( ) ( , ) ( ) d ( ) ( , ) ( ) d ( )

       1 ( ) ( ) ( ) ( , ) d ( )

       ( , ) ( ) d ( ),    .

x

u y R x y u x x P x y Tu x x

c y u y u x T P x y x

P x y f x x y

 





   

   

  

 





    (9) 

Let the solution be sought at J  points such that we 

will have J   number of node points .
j

x   Applying 

interpolation to (9), we obtain   

 ( ) ( ) 1 ( ) ( ) ,    

,  ,  1, 2, , ,

j

i D j i i D D

ij i i

x

i j

u x K u x c x u x Q D

x x j J



    

  


  (10) 

where  

( , ), ( , ),

{ : }

,
j j

m m m
l

D m l

ij N j m i N j m i

x x

K G A

   

     

1

,

L

D l

i i

l

Q F


   

1

.

M

m

i i

m

D F


   

Here ( , )n j l  is the local number associates with the 

node 
j

x  on 
l

 , ( , )N j m  is the local number of the 

node 
j

x  on 
m

e , and the notations 
, ,
,  ,  

m l l

N i N i i
G A F  and 

m

i
H  

are represented by the following integrals: 
1 1

, 2 1 2
1 1

( ) ( ( ), ) ( ) d d ,
m i

N i N m
G R x x J    

 

                       (11)

1

,
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1
,
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N k

p
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l

A P x x

a x x J
x
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


    


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 

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 

  
  
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                                                                         (12) 
1

1
1

( ( )) ( ( ), ) ( ) d ,
l i

i x l
F u x T P x x J   



    (13) 

1 1

2 1 2
1 1

( ( ), ) ( ( )) ( ) d d .
m i

i m
H P x x f x J    

 

     (14) 

Here 
2m

J  and 
1l

J  are the Jacobians for the 

transformation in relations  (7) and (8), respectively, as 

stated in equations (15) and (16) below. 

1
/ 2,

l l
J     (15)

 
 

1 2 1 2

2

1 2 2 1

( ) ,    1 .
m

x x x x
J m M

   

   
   
   

  (16) 

All the integrals in (11)-(14) are calculated by the 

Gauss Legendre quadrature formulas whenever the 

singularity does not exhibit i.e. for the collocation point 
i j

x x . Special care must be taken whenever the 

singularity occurs i.e. when .
i j

x x  The boundary 

integral in (12) with the kernel involving ( ( ), )
i

P x x  that 

expresses logarithmic singularity can be calculated by 

using Gauss-Laguerre quadrature formula. However, 

Gauss-Laguerre quadrature formula might not be a 

good choice since it demands large number of 

quadrature points for an accurate result. We use the 

semi-analytic formula proposed in 0 as an alternative 

in handling the logarithmic singularity in (12). 

 

 

3.0  NUMERICAL IMPLEMENTATION 
 

The numerical implementation was done by using 

Fortran. We solve the system of equations (10) by 

employing both direct and iterative methods. 

The iterative method that we consider is a Neumann 

series expansion such that (10) is arranged 

as ,I K u F where 
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 

,    ( ),    ,    

( ) 1 ( ) ( ) .

j

ij ij

j i i D D

i i

I u u x K K

F x c x u x Q D

   

    F

  

The solution u  then can be written as Neumann 

series expansion i.e. 

0

.

N

n

n

u K


 F   (17)

  

0 1

.

N N

n

n

n n

u u K g
 

    F F   (18) 

We use the same test domains that have been used 

in 0 i.e. a square 
1 2

1 , 2x x  , a unit circle that 

centered at (2, 2) and a parallelogram with (3, 1), (4, 

1), (6, 2) and (5, 2) as the vertices. Two interior Dirichlet 

boundary value problems with the following 

parameters are considered. 

Test 1: 
   

 

2

1

  0 for ,   

 for ,

,a x x f x x

u x x x

  

  

  

Test 2:  
   

 

2 2

2 2

2

1

 2  for ,  

 for .

, a x x f x x x

u x x x

   

  

  

    In order to check the accuracy the solutions and its 

gradients, we use posteriori relative errors i.e., 

1

1

max ( ) ( )

( ) ,
max ( )

j j

estimation exact
j J

j

exact
j J

u x u x

u
u x

 

 



   

1

1

max ( ) ( )

( ) ,
max ( )

m m

estimation c exact c
j J

m

exact c
j J

u x u x

u
u x

 

 

  

 


  

where 
m

c
x   be the centers of 

m
e . 

 

 
Figure 1 Relative errors of estimated solutions against number 

of nodes J  for square domain 

 

 
Figure 2 Relative errors of the estimated gradients against 

number of nodes  J  for square domain 

 

 

 
Figure 3 Relative errors of the estimated solutions against 

number of Neumann iterations for Test 1 comparatively to the 

one obtained by the direct method (LU decomposition) that 

represented by the horizontal lines, for various number of 

nodes J  on square 

 

 

 
Figure 4 Relative errors of the estimated solutions against 

number of Neumann iterations for Test 2, comparatively to 

the one obtained by the direct method (LU decomposition) 

that represented by the horizontal lines, for various number of 

nodes J  on the square 
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Figure 5 Relative errors of estimated solutions against number 

of nodes J for circle 

 

 

 
Figure 6 Relative errors of the estimated gradients against 

number of nodes J  for circle 

 

 

 
Figure 7 Relative errors of the estimated solutions against 

number of Neumann iterations for Test 1 comparatively to the 

one obtained by the direct method (LU decomposition) that 

represented by the horizontal lines, for various number of 

nodes J  on circle 

 

 

 
 

Figure 8 Relative errors of the estimated solutions against 

number of Neumann iterations for Test 2 comparatively to the 

one obtained by the direct method (LU decomposition) that 

represented by the horizontal lines, for various number of 

nodes J  circle 

 

 

 
 

Figure 9 Relative errors of estimated solutions against number 

of nodes J for parallelogram 

 

 

 
Figure 10 Relative errors of the estimated gradients against 

number of nodes  J  for parallelogram 
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Figure 11 Relative errors of the estimated solutions against 

number of Neumann iterations for Test 1 comparatively to the 

one obtained by the direct method (LU decomposition) that 

represented by the horizontal lines, for various number of 

nodes J  on parallelogram 

 

 
Figure 12 Relative errors of the estimated solutions against 

number of Neumann iterations for Test 2 comparatively to the 

one obtained by the direct method (LU decomposition) that 

represented by the horizontal lines, for various number of 

nodes J  on parallelogram 

 

 

As the nodes increases, we can see from Figures 1, 2, 

5, 6, 9 and 10 that the relative errors ( )u  and ( )u  

decline. Whereas from Figures 3, 4, 7, 8, 11 and 12, we 

observe that the iterative solutions converge to the 

direct method’s solutions. 

Based on Figures 3, 4, 7, 8, 11 and 12, we see that 

the iterative solutions converges around 20-100 

iterations according to test domains and the test 

problems. Simpler domain like square requires less 

number of iterations i.e. around 40-70 iterations for Test 

1 and 20-30 iterations for Test 2. Less number of 

iterations is needed for Test 2 since the accuracy of 

the direct method’s solutions as comparison is lower. 

For circle, we need about 40-50 iterations for Test 1 

and 20-30 iterations for test 2. Whereas for 

parallelogram, the number of iterations requires is 50-

100 iterations for Test 1 and 40-60 iterations for Test 2.  

Let    /2 /2
,    ,

q q q q
u J h u J h

   
       

where h  is the size of the elements (diameter). 

The approximation value of the convergence rate q  

for  u , and the approximation value of the 

convergence rate 'q or   u   associate with each 

test domain are shown in Table 1 and Table 2, 

respectively. 

 
Table 1 The value of q  

 
Test domain Test 1 Test 2 

Square 1 1.5 

Circle 0.6 1 

Parallelogram 1 2 

 

Table 2 The value of 'q  

 
Test domain Test 1 Test 2 

Square 0.16 0.9 

Circle 0.08 0.4 

Parallelogram 0.05 0.9 

 

 

4.0  CONCLUSION 
 

In this paper, the numerical results for discrete Dirichlet 

BDIDE operator show that the convergence rates for 

solution ( )u  as in Table 1 are close to the discrete 

Neumann BDIE results as presented in 0  i.e. 1q   and 

2q  , respectively  for Test 1 and Test 2. Thus, the 

results produce approximately linear and quadratic 

convergences rate of solution u  with reference to the 

element size h  for Test 1 and Test 2, respectively. Thus 

in both problems, Dirichlet and Neumann produce 

almost the same convergence rates of estimated 

solutions.  

We have also validated from the numerical 

experiments that high accuracy results have been 

achieved by using the semi-analytic method in order 

to tackle the singularity cause by integration of 

logarithmic, as proposed in 0. Therefore, we have 

deduced that this semi-analytic integration methods is 

a good alternative to the Gauss-Laguerre quadrature 

formula for calculating integrations that involve 

logarithmic singularity.    

Even though the convergence of the iterative 

solutions are confirmed for both test problems, deeper 

analysis on the spectrum of the BDIDE operator needs 

to be carried out in order to draw a conclusion on 

general Dirichlet problems. However, the results give 

an idea on the maximal eigen-values for the BDIDE 

operator. 

Therefore, it would be interesting if the research on 

the analysis of the spectral properties for the Dirichlet 

BDIDE is conducted. This is useful as to validate that that 

the iterative method can be used to solve discrete 

Dirichlet BDIDE on various shapes of domains and 

general problems. 

Other than that, it is also suggested that for the next 

research work to do the comparison for results obtain 
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from using semi-analytic method as suggested in 0 and 

the Gauss-Laguerre quadrature formula to integrate 

the integral that involve the singularity of a logarithmic 

function. 
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