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Abstract. A nurxierical implementation of the direct Boundary-Domain Integral Equation
(BDIE) related to the Neumann boundary value problem for a scalar elliptic PDE with vari-
able coeficient is discussed in this paper. The BDIE is reduced to a uniquely solvable one by

discussed.

1. INTRODUCTION

It is well-known that one can reduce a boundary-value problem (BVP) for a partial differential
equation (PDE) to a boundary-integral equation (BIE) and then solve the latter numerically.
However, in order for the reduction to be enabled, a fundamental solution for the PDE is

coeflicients, such a fundamental solution is not generally available in an explicit form for partial
differential operators with variable coefficients.

In handling the variable-coefficient cases, one can use a parametrix (Levi function), which
is much wider available, instead of the fundamental solution. This approach allows reduction
of the PDEs with variable coefficients not to BIE but to boundary-domain integral equation
(BDIE) or boundary-domain integro-differential equation (BDIDE), cf. [1-3].

Let us consider the Neumann problem for the linear second-order elliptic PDE in a bounded
domain Q C R? with a boundary 69:

d s,
Lu(z) := wzﬂ %—Za(x)—azj-u(x) =f(z), zeQ (1)
2
Tu(z) := a,(x)nj(:v)%u(:c) =t(z), zedn (2)
J=t 7

where u(z) is the unknown function, while f(z), t(z) and a(z) > const. > 0 are prescribed
functions.

A parametrix for PDE (1) with variable coefficient, obtained from the fundaments] solution
for the same equation but with *frozen’ coefficient a(z) = a(y), is

_Injz—y] 2
P(%Z/)—W, T,y €R7, (3)
Wwhere lz —y| = V(s — i) (z; — ¥i). It satisfies the equation

where §(z — y) is the Dirac delta function, while the remainder

R(z,y) = — %~V Oa(z)

= , T,y €R?
ama(y)ly —a® om @ Y
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has only a weak singularity at z = y.

The derivation of the BDIEs for some PDE with variable coefficient can be found in [1].
Particularly, the direct united BDIE for the Neumann problem with respect to the unknown
function u has the following form:

c(y)uly) - /6 o w(z) Ty P(z,y) dl'(z) + /Q R(z,y)u(z)dQ(z) = F(y), (5)
- where A
i F@%=—Adﬂnwﬂwﬂmygépmﬂv@mmm, y €QUN,
e 1 if y € QF,
c(y) = 0 ifyeqQ, (6)

a(y)/2r  if y € 09,

Jiii‘ ‘ where a(y) is an interior angle at a corner point y of the boundary 8. If 00 is a smooth
boundary, then we have c(y) = 1/2. The BDIE (5) does not only contain the usual line integrals
. over the boundary 89, as in the case when the parametrix is a fundamental solution, but also
i integrals over the entire domain  with the unknown function u in the integrand.

The Neumann problem is not unconditionally solvable, and when it is solvable, its solution
can only be unique up to an additive constant. These properties are inherited by the BDIE,
cf. [4]. Asin [2], one can add the perturbation operator Q] = l—alﬁl Joq u(z)dI(z), where
09| = [;qdI(z) is the boundary length, to equation (5) to obtain the following perturbed
equation )

1

e(y)uly) - /6 L H@LPE I + s [ u(@)dr)+ /Q R(z,y)u(z)dz = F(y),

» yeQUAN. (7)

Following [5], one can prove that equation (7) is uniquely solvable for any right-hand side and
moreover, when the solvability condition for equation (5) is satisfied, one of its solutions, such
that [ u(z)dl(z) = 0, is delivered by the solution of its perturbed counterpart (7).

ikt Further in this paper we discretise (7) by quadrilateral bi-linear domain elements and linear
il : boundary elements, and solve the resulting system of linear algebraic equations by a version of
il Neumann iterations. Note that in [2] the equation similar to (7) but with a localised parametrix
‘ instead of (3) was discretised using triangular linear domain elements and linear boundary ele-
ments. Then the obtained linear algebraic system was solved by the direct (LU decomposition)

T
?k method.
“'“;;[j 2. DISCRETIZATION OF THE BDIE
““'3;‘”1‘ The domain Q is discretised by a mesh of M iso-parametric ‘quadrilateral bilinear domain el-
i ements, & = (J¥e,, ex Nen = 0, k # m, with nodes 2, i = 1,...,J, at the vertices of
Tt quadrilaterals. The Cartesian coordinates of a point on domain element em C Q with the ver-
tices X™V N =1, -+, 4, in terms of the intrinsic coordinates (&1, §2) =: £ on the reference square
are given by the relations -

, 4 N
N=1

where @y (£) are the local shape functions,

01(6) = (1-&)1-&)/4, @208 =1 +6)(1—&)/4,
D3(6) =1+ &)1 +&)/4, 246 =(1-&)1+&)/4.
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Similar to the finite element approximation, the unknown function u(z) at any point z € ) is
interpolated over its values u(z?) at the global nodes 27 as

wl) = quj (z)u(z?), z,27 € QU A,
J

where ¢;(x) are the global shape functions satisfying the so-called d—property, ®i(zr) =
and are related to the local shape functions as

¢(:C) _ QN('fm(fL')) if z¢ em, zf = xmN
o i z€en, xj#XmNa N=1,..,4

ik

where ™ (z) are the functions inverse to (8).

The polygonal boundary 8Q becomes discretised with L continuous linear iso-parametric
elements, 00 = Uf Iy, where 'y, T, - - - , 'z, are the sides of the corresponding domain elements.
The Cartesian coordinates of a point on a boundary element I’y C 0Q with the intrinsic co-
ordinate 7, which coincides with an intrinsic coordinate & or &y of the corresponding domain
element, are given by

2
) =) TmXx,  —1<g<i, (9)
=l

where Uy, (n) are the local one-dimensional shape functions, that are the traces of the two-
dimensional shape functions ® N(€):

T =30-n), W) =i04n, —12ps1

Applying the interpolation to equation (7) employed at the mesh nodes z att=1..Jas .

the collocation point, we get the system of J linear algebraic equations for'J unknowns u(xd,

c(z"u(z?) + > Kyu(@')=F, o e QuaQ, forj=1, 2,--,J (10)
I eQUAN

where F; = Q; + D;, while Kij, Qi; and D;; are defined as follows:

Ky = _—/89 ¢j(x)TxP(xi,x) dI'(z) + l?lf—ﬂ /i;ﬂ ¢](x) dT(z) + /Q ¢j(1’)R(fEi,$) dz,
L ' 1 L
o *E/ﬁ ¢;(2)TpP(z*, ) dT'(z) + W;/p, ¢j(z) dT'(z)

M .
+Z/ ¢j(z)R(z",z) dz,  (11)
- m=1 Yém

L

o = - /mpw,m)t(m)————; | Pt are) (12
M .

o= [ Peh (@i = 3 /emP(m’}:v)f(:c)dx- (13)

After changing the integration variables to the intrinsic coordinates, we can write (11), (12) and
(13) as \
T

\

M4 L M

! \ / . A _ m

B+ / g G%ia/@i_‘_zﬁlﬁ Di_zHi )
FIN=1 =1 m=1




where

ol I

Al = / V() TP, ) () (14)

v 1

B/ = /_ 1‘I’n(n)Ju(n) dn, , (15)
1

A= P!, () Ha(n) T (n) dn (16)
1 g1 ‘

e = / 1 / BN(ORE 2(0) Fnal6) dexdts (17)
1 1 '

C [ (P 2(€) @) Fmale) derd, (18)
—1d41

and Jz and Jj; are the Jacobians of the transforms (8) and (9), respectively.

The regular integral (15) and the double layer potential (14) (since it is regular on the piece-
wise smooth curves) as well as the integrals in (16)-(18), when the collocation point z* is not a
vertex of the integration element, are evaluated by the Gauss-Legendre quadrature formulas

1 v 1 7
/ Fn)dn =32 W (o), / 1 / SOt = 303 Wl (G )
i 2 i

where 1 and ) are the numbers of quadrature points used to evaluate the integrals, 7p, {1, and &2,
are the quadrature point coordinates, while W, and W, are the quadrature weights associated
to point p and g, respectively. However, the integrals (16)-(18) need a special treatment when
a collocation point z* is a vertex of the integration element since the kernels of these integrals

are weakly singular at collocation points. The integral (16) with the kernel involving In(1/r)

are evaluated numerically by using the Gauss-Laguerre quadrature, i.e., fol f(@) 1n (%) dn =~

7

> Wpf(Tp), cf. [6]. For the domain integrals (17) and (18), we split the square reference
p=1
element into triangular subelements and apply the Duffy transformation, see [6].

System (10) can now be solved by a numerical method for linear algebraic systems, partic-
ularly LU decomposition method or Neumann series expansion. First, we rewrite (10) as

(I -Kju=F,

where I = §;, u = u(z?), F = F(z%), Ky = (1 - c(z¥))d;; — Kyj. Since c(z®) = 1 at the
interior points z!, then K;; = —Kj; for such 4, while K;; = %615 — K;; for smooth points z" of
the boundary 8Q. Then we expand the solution into the Neumann series,

> o0
U= Z K"F = gn, wherego =F, gn =Kgp-1. (19)
n=0 n=0

Convergence of the Neumann series of the form (19) for the purely boundary integral equa-
tions associated with the Dirichlet problem for the Laplace equation is well known, see e.g. [7,8].
To the best of the authors knowledge, a proof of convergence of the Neumann series for BDIEs
is not available. One of the objectives of the paper is to conclude from numerical experiments
whether series (19) does converge, for discretised BDIE (7), in the considered examples.

3. NUMERICAL RESULTS
A FORTRAN code was written for numerical solution of the BDIEs where the system of equation
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; AR J
B lréljaSXJ luapprom(x ) Uemact(x )’

max ,Uemact (53‘7)’

In all the numerica] experiments, we solve
f(z) =0in Q and t(z) = a(:v)g% =
u(z) = z; in Q.

—+— LU Method: J=25
—6— LU Method: J=81
—%— LU Method: J=289
—*%— LU Method: J=1089
'? —8— Neumann series: J=25
—— Neumann series: J=81
o —4— Neumann series: J=289

—<— Neumann serjes: J=1089

Relative Error

10

No of iterations

(a) (b)

e circle and 100 iterations for the parallelogram. As the number of nodes .J
increases, the error decreases for the both methods, tending to a straight line on g log-log scale,
i.e., the error becomes proportional to g power of J.
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Figure 2: Relative error of the approximate solutions on the square given by 10,20, 30, 40, 50
and 60 Neumann iterations and by the LU decomposition vs. number of nodes J.
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Figure 5: (a) The parallelogram domain with vertices (3,1), (4,1), (6,2), (5,2) with J = 289 node
- mesh. (b) Relative error of the solutions on the parallelogram domain obtained by the Neumann
i iterations vs. number of iterations, compared with error of the LU decompos1t10n solution, for

:5"1- ? fixed number of nodes J = 25,81, 289 and 1089.

—+— LU Method
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Figure 6: Relative error of the approximate solutions on the parallelogram given by 20, 40, 60,
80, 100 and 120 Neumann iterations and by the LU decomposition vs. number of nodes J.
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