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Abstract 

The behaviour of the eigenvalues of Dirichlet Boundary-Domain Integro-Differential 

Equations (BDIDEs) with a reduced number of collocation points has never been 

discussed theoretically. The uncertainty of the behaviour of the eigenvalues of Dirichlet 

BDIDEs will prohibit the use of iteration methods in solving the BDIDEs system of 

equations. The purpose of this paper is to demonstrate the spectral properties of matrix 

operator obtained from the discretized Dirichlet BDIDEs with reduced number of 

collocation points. We calculate the eigenvalues of the matrix operator, numerically. The 

discussions of the spectral properties are based on the eigenvalues of the discretized 

BDIDEs that are obtained numerically. In our numerical test, the attribution of the eigen-

values for matrix operator obtained numerically for the discretized BDIDEs with reduced 

number of collocation points exceeds 1. The findings demonstrate that it is utterly 

impracticable to solve the system yielded from the discretized Dirichlet BDIDEs with a 

reduced number of collocation points with an iterative method. The theoretical explanation 

of why this behaviour occurs is also provided. With this result of the eigenvalues attained, 

the matrix equations yielded from the discretized BDIDEs with a reduced number of 

collocation points can purely be solved by direct methods. 

 

Keywords: Direct united boundary-domain integro-differential equation, Dirichlet 

problem, partial differential equation, semi-analytic integration method. 

 

1. INTRODUCTION 

 

Many real-life physical problems like those involving sound, elasticity, and fluid flow 

can be expressed as Partial Differential Equations (PDEs).  However, almost all the real-life 

problems are very complicated that the analytical solutions of the problems are almost 

impossible to attain. There are many numerical methods for PDE are available. The details of 

the numerical methods in solving PDEs are in, e.g. [1]-[4]. 
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The Boundary Element Method (BEM), one of the numerical method requires 

representation formulas i.e. Green’s identity and Betti’s formula, respectively, for potential 

and elasticity theories. The representation formulas are in boundary integration representation 

and known as Boundary Integral Equations (BIEs). These representation formulas can be 

attained by making use of fundamental solutions. 

However, the fundamental solutions are only available for Boundary Value Problems 

(BVPs) related to PDE associates with a constant coefficient. Instead of a fundamental 

solution, one can use a parametrix to obtain the representation formula for to a problem 

related to PDE with a variable coefficient. The representation formula is in Boundary-

Domain representation formulas, which are known as Boundary-Domain Integral Equations 

(BDIEs) and BDIDEs, respectively, for Neumann and Dirichlet problems.  

 

The numerical implementation for Neumann BDIE and the details on the attribution of 

the eigenvalues for matrix operator belongs to the system of equations for discretized 

Neumann BDIEs is presented in [5]. In [6], the two approaches of Dirichlet BDIDEs in the 

interpolations process are shown.    

 

For the first approach, we take the collocation points at all nodes. The second approach 

deals with taking the collocation points for the nodes in the interior domain only. Then, also 

in 2016, the numerical solution of the Dirichlet BDIDEs by using the first approach in the 

interpolation process was presented in [7]. In 2019, [8] presented the discussion on the 

spectrum, i.e., the set of the eigenvalues of the Dirichlet BDIDEs for PDE with variable 

coefficient by employing the first approach of the interpolation process. 

 

However, the attribution of the eigenvalues for matrix operator belongs to the BDIDEs 

system of equations with less no collocation points as in [6] has never been discussed until 

now. The fact that the system has a reduced number of collocation points compared to the 

system of BDIDEs obtained from the first approach gives an advantage in terms of 

computational effort. Therefore, the second approach is more interesting for numerical 

purposes. The numerical results for Dirichlet BDIDEs using the second approach were also 

shown in [6], which also utilized the semi-analytic method as introduced in [9].  

 

The solution of the system of the Dirichlet BDIDEs can be attained by direct methods 

e.g. LU decomposition and Gaussian elimination, regardless of the behaviour of the 

eigenvalues of the system operator. But it is not the case for the application of the iteration 

methods. The use of iteration methods depends on the eigenvalues' behaviour such that all of 

them lie in the unit circle. However, the attribution of the eigen-values for matrix operator of 

its system of equations are not discussed in that paper.  

 

In this paper, we extend the discussion of Dirichlet BDIDE by presenting the calculated 

eigenvalues of Dirichlet BDIDEs matrix operator with reduced collocation points. The 

deliberation on the numerical eigenvalues' behaviour corresponds to the theoretical studies is 

also presented in this paper.     

 

2. RESEARCH METHOD 
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Let us take into account the linear second-order elliptic PDE as below. 

2

, 1

( )
( ) ( ) ( ),    ,

i ji j

u x
Au x a x f x x

x x


 
  

 

 
 
 

                                                        (1)                    

with a Dirichlet boundary condition 

    ,    .u x u x x   

 

Here ( )u x  be the inquired function whereas ( )f x  and ( )u x   be known functions. Note 

that equation (1) is a PDE with ( )a x   be a variable coefficient that prohibits us from using a 

fundamental solution. Instead, we can use a parametrix  

                2ln | |
( , ) ,    , ,

2 ( )

x y
P x y x y

a y


                                                                  (2)   

as the substitute for a fundamental solution.  

 

It is stated in, e.g. [6] and [9] that ( , )P x y  satisfies 

               ( , ) ( , ) ( , ).xA P x y x y R x y                                                                        (3) 

 

Here,  ( , )R x y  is stated below, 
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                                                        (4)                     

and ( , )x y  be the Dirac delta function. 

 

The notation r  in (4) is the radius. Moreover, we define ( )Tu x   and ( , )xT P x y  as given 

below. 
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where 1 2( ) ( ( ), ( ))x x x    be the outward normal of  .  

 

The Dirichlet direct united BDIDEs is as read below. See, e.g., [6] and [9]. 

    
( ) ( ) ( , ) ( ) d ( ) ( , ) ( ) d ( )

             ( ) ( , ) d ( ) ( , ) ( ) d ( ),    .x

s y u y R x y u x x P x y Tu x x

u x T P x y x P x y f x x y

 

 

   

    

 

 
                                  (7) 

 

Here    and ( )c y  is given by 

            2

 ,1,

( ) 0,   \ ,

( ) / 2 ,   ,

y

s y y

y y 



  









                                                                (8) 

where ( )y  is an interior angle at a corner point y of the boundary   . 
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In [6], the linear isoparametric discretization and bilinear quadrilateral mesh elements are 

used for the boundary    and domain  , respectively. Following the same procedure, we 

can write  

          
1

,  ,  ,

L

l l m

l

l m



                                                                       (9) 

            
1
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M

m m k

m

m k



                                                                       (10) 

 

The two approaches of BDIDEs implementations are shown in [6]. The first approach is 

by considering the collocation points 
i

x  in and on the boundary and interior domain such that 
i

x  . The second one is we consider i
x  only at nodes in the interior domain i.e. .

i
x   

 

For the first approach, we take the collocation points 
i

x   at all nodes such that 

,  ,  1,..., .
i

x i J         Here J  is the number of nodes in and on   such that 

.         

 

The second approach deals with taking the collocation points for the interior nodes only 

i.e. 
i

x   , 1,..., Di J . Here DJ  be the number of nodes interior to the domain   such that 

,D BJ J J   where BJ   is the number of nodes on  . 

 

The second approach gives rise to the discretized BDIDEs with reduced collocation 

points i.e., with 
i

x   as shown below. See in [6]. 
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The Cartesian coordinate ( )x  , ( ) lx      with 1 1     is given as. 

        
2

 

1

( ) ( ) ,
l n

n

n

x X 



                                                                                             (19) 

whereas the Cartesian coordinate ( )x  , ( ) mx      with 1 21 1,  1 1        is given 

below.  

              
4

1

( ) ( ) .
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N

N

x X 
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                                                                                          (20) 

 

Here 
 

,  1, 2
l n

X n   and ,  1, , 4
mN

X N   , respectively be the thn endpoint for each line 

segment l  and the thN  vertex for each quadrilateral domain element .m  The functions 

( ),  1, 2n n   and ( ),  1, 2,..., 4,N N   are the local shape functions in respect to one-

dimensional and two-dimensional, respectively, i.e., 

       1 2
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2 2
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( ) (1 )(1 ) / 4,    ( ) (1 )(1 ) / 4,   1 1.,
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       
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The numerical implementation to obtain the BDIDEs operator for the system of 

equations with reduced collocation points is done by employing the Fortran compiler with 

double precision accuracy. After the BDIDE matrix operator is gained, we then use Matlab 

Software to compute the discrete eigenvalues belongs to the BDIDEs operator. 

 

The placement of the eigenvalues for the discrete BDIDE operator is beneficial in 

investigating whether or not the system of equations (11) can be solved iteratively. 

 

We denote that 

       ( ) ( ) ,
i

i D j D D
ij i i

x

F x K u x Q D



                                                          (23) 

such that (11) be written as 

        ( ) ( ) ( ),    .
i

i D j i i
ij

x

u x K u x F x x



                                                      (24) 

 

We can also write (24) as 

                   I u F K ,                                                                                         (25) 

where 

         ,ijI                                                                                                    (26) 

         ( ),
j

u u x                                                                                              (27) 

                      ,
D
ijK K                                                                                               (28) 

        ( ).
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We then can write (25) as Neumann series expansion given below. 
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0
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N

n

n

u F
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K                                                                                            (30) 

 

The calculation of n
K  takes a lot of computation time and effort. In order to minimize 

those two, we denote that  

        
0

,g F                                                                                               (31) 

such that 

        .1n ng g K                                                                                        (32) 

 

Equations  (31) and (32) allow us to write (30) as follows. 
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.
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u F F g
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We check whether the spectral radius of the operator K  lies in a unit disc to determine 

the convergence of the series (30) and (33). The test domain used is a square 1 21 , 2x x   , 

which is also one of the test domains used in [5]-[7]. In [6]-[7], high accuracy results for the 

solutions have been attained for the following interior Dirichlet problems for first and second 

approaches. 

 

Observe that when 1a  , we will have ( , ) 0R x y  , such that Dirichlet BDIDE (7)  be 

reduced to a BIEs, i.e.,  

  ( ) ( ) ( , ) ( ) d ( ) ( ) ( , ) d ( ) ( , ) ( ) d ( ),  ,xc y u y x y Tu x x u x T x y x x y f x x y
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where F  is the fundamental solution written by 

           2ln | |
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


 F                                                                 (35) 

 

For that, let consider a new interior Dirichlet problem, i.e., with a constant 1a   i.e.  

Test 1:  

                1  for  and  1,  0 for . u x x x a x f x x                                         (36) 

 

We know from the theory of BIEs that all the eigenvalues of the matrix operator yields 

from discretized BIEs (34) with completed number of collocation points should belong to a 

unit circle. See e.g. [10]. 

 

Discretizing (34), letting ( ) 1
i

c x   , and considering 
i

x  only at nodes in the interior 

domain, i.e., ,
i

x   for test 1, (34)  is jotted down as  

    ( ) ( ) ( ) ,     ,  
j j

i D j D j D i
ij ij i

x x

u x u x u x Q x

 

     K K                                           (37) 

where 

            

 
( , ),

:

,
j

m m
l

D

ij

l

N j m i

x

A

   

 K                                                                         (38) 



European Journal of Molecular & Clinical Medicine 

  ISSN 2515-8260                 Volume 08, Issue 02, 2021 

 

56 
 

with  D
iQ  and ,

l

N iA  are given as in (13) and (17).    

 

As previously, we can also denote that 

       2 ( ) ( ) ,
i

i D j D
ij i
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F x u x Q



   K                                                                             (39) 

such that (37) be written as 
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which can also be written as 

     2 2I u F K                                                                                          (41) 

where 

       ,ijI                                                                                                      (42) 

       ( ),
j

u u x                                                                                                (43) 

    2 ,
D
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We can then write (41) as follows. 
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n
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The calculation of 2
n

K  take a lot of computation time and effort. In order to minimize 

those two, we denote that  

        0 2 ,Fg                                                                                                       (47) 

such that 

    2 1.
n

n n Kg g                                                                                           (48) 

 

Equations (47) and (48) allow us to write (46) as follows. 

     
0 1

2 2 2 .

N N

n

n n

n
u F F

 
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The Numerical Results and Discussion 

In our experiment indicates that some eigenvalues for the discrete operator 2K  with 

reduced number of collocation points for test 1, appears exterior to a unit circle. The 

explanation of why this situation occurs is presented next. 

 

Let ,k   for 1, 2,..., Dk J  be the eigenvalues of the matrix 2
D
ijK K  , i.e. the number k  

that gives non-trivial solutions for the homogeneous equation  2 0.k I u  K  We present the 
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largest five eigen-values for the Dirichlet interior problem with   1a x   tested on a square 

domain 1 21 , 2x x   for test 1 in the Figure 1.  

 

The values for the number of nodes on the boundary  , BJ   are taken to be 16,  32,  64  

and 128.  Meshing the whole domain of the square into several sub squares yields the values 

of J  to be 25,  81,  289  and 1089 . This implies the values of  DJ  are 9,  49,  225  and 961.  

 
Figure 1 Eigenvalues for operator 2K  against J  

 

From Figure 1, as J  increases, the eigenvalues of discrete operator 2K  do not contain 

the unit circle. This causes the Neumann iteration in (51) to diverge. This indicates that the 

result obtained for BIEs with reduced number of collocation points does not agree with the 

theory of the BIEs that all the eigen-values of the matrix operator yields from discretized 

BIEs (34) with non-reduced number of collocation points should belong to a unit circle. See 

e.g. [10]. However, there is no theory on the eigenvalues of the Dirichlet BDIDEs with a non-

reduced number of collocation points.  

 

Observe that all the five maximal eigenvalues in Figure 1 are real numbers. There is an 

explanation for the results obtained from the experiment. This is due to the fact that the 

operator 2K  is regarded as a discrete approximation of closed and unbounded Boundary 

Integral Equations (BIEs) operator.  The range of operator 2K  is the function u  that maybe 

non-zero on   whereas the domain of definition is the function  which is zero on  . Yet, 

we know from [11] that the closed unbounded operator's resolvent has an essential singularity 

at infinity.  

 

Like BIEs operator with reduced number of collocation points 2K , the BDIDEs operator 

with reduced number of collocation points K  is also regarded as discrete approximation of 

closed and unbounded operator. Therefore, the eigenvalues distribution behaviour for 

BDIDEs operator K  in (28) tested for any problem, including BVPs for PDEs with variable 

u
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coefficient, is the same as the result obtained for BIEs. Therefore, the iterative method is not 

recommended to solve Dirichlet BDIDEs with a reduced number of collocation points. 

 

3. CONCLUSIONS 

 

We have presented the analysis of the spectral properties for the discrete Dirichlet 

BDIDEs with reduced collocation points, i.e., the collocation points i
x  in the domain, i

x  . 

The study of the behaviour of the eigenvalues for the respected operator is also discussed. 

This analysis is useful in examining the behaviour and effectiveness of the iterative 

methods in solving discrete Dirichlet BDIDEs with reduced collocation points. Despite the 

fact that discrete BDIDE with 
i

x   requires reduced computational time for the numerical 

solution compared to the discrete BDIDE with 
i

x  , it can only be solved by direct 

methods.  

This is from our numerical experiment that indicates the spectral radius (maximal 

eigenvalues) of the discrete BDIDEs operator with a reduced number of collocation points (
i

x  ) exceeds 1 . We also explained, theoretically why this condition occurs. 

In conclusions, no iterative method e.g. Neumann iterative method will work for solving 

matrix equations of the discretized BDIDEs with reduced number of collocation points. 

However, any direct method in solving a linear system of equations still works in relation to 

the Dirichlet BDIDEs system of equations with reduced collocation points. With this finding, 

researchers that deal with Dirichlet BDIDEs with reduced collocation points can straightaway 

opt for direct methods without spending much time to solve it by using the iterations 

methods.  
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